Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications Institution, 9 Wenyuan Road, Nanjing, 210046, China.
Angew Chem Int Ed Engl. 2017 Feb 13;56(8):2171-2175. doi: 10.1002/anie.201610125. Epub 2017 Jan 12.
DNA hydrogels hold great potential for biological and biomedical applications owing to their programmable nature and macroscopic sizes. However, most previous studies involve spontaneous and homogenous gelation procedures in solution, which often lack precise control. A clamped hybridization chain reaction (C-HCR)-based strategy has been developed to guide DNA self-assembly to form macroscopic hydrogels. Analogous to catalysts in chemical synthesis or seeds in crystal growth, we introduced DNA initiators to induce the gelation process, including crosslinked self-assembly and clamped hybridization in three dimensions with spatial and temporal control. The formed hydrogels show superior mechanical properties. The use of printed, surface-confined DNA initiators was also demonstrated for fabricating 2D hydrogel patterns without relying on external confinements. This simple method can be used to construct DNA hydrogels with defined geometry, composition, and order for various bioapplications.
由于其可编程性和宏观尺寸,DNA 水凝胶在生物和生物医学应用中具有巨大的潜力。然而,大多数先前的研究涉及在溶液中自发和均匀的凝胶化过程,这往往缺乏精确的控制。已经开发出一种基于夹式杂交链式反应 (C-HCR) 的策略来指导 DNA 自组装形成宏观水凝胶。类似于化学合成中的催化剂或晶体生长中的晶种,我们引入 DNA 引发剂来诱导凝胶化过程,包括交联自组装和夹式杂交在三维空间中具有时空控制。形成的水凝胶具有优异的机械性能。还展示了使用印刷的、表面受限的 DNA 引发剂来制造 2D 水凝胶图案,而无需依赖外部限制。这种简单的方法可用于构建具有定义的几何形状、组成和有序性的 DNA 水凝胶,用于各种生物应用。