Suppr超能文献

胶质瘤中基因组学与非编码RNA的综合综述

A Comprehensive Review of Genomics and Noncoding RNA in Gliomas.

作者信息

Hassan Ahmed, Mosley Jennifer, Singh Sanjay, Zinn Pascal Olivier

机构信息

*Department of Diagnostic Radiology †Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center ‡Department of Neurosurgery, Baylor College of Medicine, Houston, TX.

出版信息

Top Magn Reson Imaging. 2017 Feb;26(1):3-14. doi: 10.1097/RMR.0000000000000111.

Abstract

Glioblastoma (GBM) is the most malignant primary adult brain tumor. In spite of our greater understanding of the biology of GBMs, clinical outcome of GBM patients remains poor, as their median survival with best available treatment is 12 to 18 months. Recent efforts of The Cancer Genome Atlas (TCGA) have subgrouped patients into 4 molecular/transcriptional subgroups: proneural, neural, classical, and mesenchymal. Continuing efforts are underway to provide a comprehensive map of the heterogeneous makeup of GBM to include noncoding transcripts, genetic mutations, and their associations to clinical outcome. In this review, we introduce key molecular events (genetic and epigenetic) that have been deemed most relevant as per studies such as TCGA, with a specific focus on noncoding RNAs such as microRNAs (miRNA) and long noncoding RNAs (lncRNA). One of our main objectives is to illustrate how miRNAs and lncRNAs play a pivotal role in brain tumor biology to define tumor heterogeneity at molecular and cellular levels. Ultimately, we elaborate how radiogenomics-based predictive models can describe miRNA/lncRNA-driven networks to better define heterogeneity of GBM with clinical relevance.

摘要

胶质母细胞瘤(GBM)是最具恶性的原发性成人大脑肿瘤。尽管我们对GBM的生物学特性有了更深入的了解,但GBM患者的临床预后仍然很差,因为采用最佳可用治疗方法时,他们的中位生存期为12至18个月。癌症基因组图谱(TCGA)最近的研究工作将患者分为4个分子/转录亚组:神经干细胞样、神经元、经典和间充质。目前正在持续努力,以提供GBM异质性组成的全面图谱,包括非编码转录本、基因突变及其与临床预后的关联。在本综述中,我们介绍了根据TCGA等研究被认为最相关的关键分子事件(遗传和表观遗传),特别关注非编码RNA,如微小RNA(miRNA)和长链非编码RNA(lncRNA)。我们的主要目标之一是说明miRNA和lncRNA如何在脑肿瘤生物学中发挥关键作用,从而在分子和细胞水平上定义肿瘤异质性。最终,我们阐述基于放射基因组学的预测模型如何描述miRNA/lncRNA驱动的网络,以更好地定义具有临床相关性的GBM异质性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验