Novoselova S M
V.A. Steklov Mathematical Institute, Academy of Sciences of the U.S.S.R., Leningrad.
Hear Res. 1989 Sep;41(2-3):125-35. doi: 10.1016/0378-5955(89)90006-3.
Considerable sharpening of basilar membrane frequency selectivity and simultaneous decreasing of phase lag can be obtained in a linear ('passive') hydromechanical three-dimensional cochlear model, if the transverse geometry of the cochlea is taken into account. Both the tuning qualities, Q10, and the phase angles at CF of some transversally inhomogeneous linear models can be set into the range of experimental data [Sellick et al. (1983) Hear. Res. 10, 93-108; Robles et al. (1986) J. Acoust. Soc. Am. 80, 1364-1379.] The calculations are developed on the base of WKB-approximation. The integral coefficients of eiconal equation are the transversally averaged means of basilar membrane surface mass density and stiffness: (formula; see text) where eta(y) is the major eigenfunction of basilar membrane cross-sectional vibrations. The classical Ritz's method is used for calculation of the cross-sectional eigenfunctions. The size and the form of cochlear cross-section are found also to alter the tuning. The rapid increase of the model response towards the peak is due to that damping remains negligible up to the peak position, where the imaginery part of the wave-number begins to increase sharply.
如果考虑耳蜗的横向几何结构,在一个线性(“被动”)流体力学三维耳蜗模型中,可以实现基底膜频率选择性的显著锐化以及相位滞后的同时减小。一些横向非均匀线性模型的调谐品质Q10以及特征频率处的相位角都可以设定在实验数据的范围内[塞利克等人(1983年)《听觉研究》10卷,93 - 108页;罗夫莱斯等人(1986年)《美国声学学会杂志》80卷,1364 - 1379页]。计算基于WKB近似展开。程函方程的积分系数是基底膜表面质量密度和刚度的横向平均均值:(公式;见原文)其中η(y)是基底膜横截面振动的主要本征函数。经典的里兹方法用于计算横截面本征函数。还发现耳蜗横截面的尺寸和形状也会改变调谐。模型响应朝着峰值的快速增加是由于在达到峰值位置之前阻尼一直可以忽略不计,在该峰值位置波数的虚部开始急剧增加。