Suppr超能文献

消除Illumina HumanMethylation450芯片数据差异甲基化分析中不必要的变异。

Removing unwanted variation in a differential methylation analysis of Illumina HumanMethylation450 array data.

作者信息

Maksimovic Jovana, Gagnon-Bartsch Johann A, Speed Terence P, Oshlack Alicia

机构信息

Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia.

Department of Statistics, University of California, Berkeley, CA 94705, USA.

出版信息

Nucleic Acids Res. 2015 Sep 18;43(16):e106. doi: 10.1093/nar/gkv526. Epub 2015 May 18.

Abstract

Due to their relatively low-cost per sample and broad, gene-centric coverage of CpGs across the human genome, Illumina's 450k arrays are widely used in large scale differential methylation studies. However, by their very nature, large studies are particularly susceptible to the effects of unwanted variation. The effects of unwanted variation have been extensively documented in gene expression array studies and numerous methods have been developed to mitigate these effects. However, there has been much less research focused on the appropriate methodology to use for accounting for unwanted variation in methylation array studies. Here we present a novel 2-stage approach using RUV-inverse in a differential methylation analysis of 450k data and show that it outperforms existing methods.

摘要

由于Illumina公司的450k芯片每个样本成本相对较低,且能广泛地以基因为中心覆盖人类基因组中的CpG位点,因此在大规模差异甲基化研究中被广泛使用。然而,就其本质而言,大型研究特别容易受到不必要变异的影响。在基因表达芯片研究中,不必要变异的影响已有大量记录,并且已经开发出许多方法来减轻这些影响。然而,针对甲基化芯片研究中用于处理不必要变异的合适方法的研究要少得多。在此,我们提出一种在450k数据的差异甲基化分析中使用RUV-inverse的新型两阶段方法,并表明它优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a92/4652745/04d7002ca7a6/gkv526fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验