Holland I Barry, Peherstorfer Sandra, Kanonenberg Kerstin, Lenders Michael, Reimann Sven, Schmitt Lutz
Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France.
Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany.
EcoSal Plus. 2016 Dec;7(1). doi: 10.1128/ecosalplus.ESP-0019-2015.
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
一种非常大的I型多肽开始从核糖体中延伸出来;几分钟后,这个仍然无法识别、基本缺乏二级结构的多肽,在某些情况下长度增加了一千个或更多残基。最后一百个C末端残基的合成开始了。这包括识别码,即最后50个氨基酸内的分泌信号,其设计用于与等待的ATP结合盒(ABC)转运蛋白对接。接下来会发生什么是本综述的主题,主要但并非唯一关注的是溶血素HlyA,一种由I型系统分泌的RTX蛋白毒素。转运底物范围从小肽到许多病原体产生的巨型蛋白质。这些分子在没有可检测到的细胞伴侣的情况下,克服了巨大的障碍,在细胞表面最终折叠之前穿过两层膜,这涉及一个独特的自催化过程。未折叠的HlyA在翻译后被挤出,C末端先出来。跨膜“通道”由HlyB(ABC转运蛋白)、跨内膜和周质的HlyD(膜融合蛋白)以及TolC(外膜)形成。我们对C末端分泌密码以及位于这个纳米机器核心的HlyD和HlyB的结构功能进行了新的评估。令人惊讶的是,在许多I型分泌系统亚型中,分泌机制的关键细节差异很大。这些包括替代折叠过程、每个I型亚家族明显不同的分泌密码以及ABC转运蛋白的替代形式;最显著的是,ABC蛋白可能通过截然不同的机制转运肽或多肽。最后,我们提出了Hly转运体、HlyB、多关节的HlyD和TolC出口的推测结构。