Materials Research Centre and §Department of Physics, Indian Institute of Science , Bangalore 560012, India.
ACS Appl Mater Interfaces. 2017 Jun 14;9(23):19462-19469. doi: 10.1021/acsami.6b12064. Epub 2017 Jan 13.
Band structure engineering is a powerful technique both for the design of new semiconductor materials and for imparting new functionalities to existing ones. In this article, we present a novel and versatile technique to achieve this by surface adsorption on low dimensional systems. As a specific example, we demonstrate, through detailed experiments and ab initio simulations, the controlled modification of band structure in ultrathin Te nanowires due to NO adsorption. Measurements of the temperature dependence of resistivity of single ultrathin Te nanowire field-effect transistor (FET) devices exposed to increasing amounts of NO reveal a gradual transition from a semiconducting to a metallic state. Gradual quenching of vibrational Raman modes of Te with increasing concentration of NO supports the appearance of a metallic state in NO adsorbed Te. Ab initio simulations attribute these observations to the appearance of midgap states in NO adsorbed Te nanowires. Our results provide fundamental insights into the effects of ambient on the electronic structures of low-dimensional materials and can be exploited for designing novel chemical sensors.
能带结构工程是一种强大的技术,既可以用于设计新型半导体材料,也可以为现有材料赋予新的功能。在本文中,我们提出了一种新颖而通用的技术,通过在低维系统上的表面吸附来实现这一目标。作为一个具体的例子,我们通过详细的实验和第一性原理模拟,证明了由于 NO 吸附,超薄碲纳米线的能带结构可以得到控制的修饰。对暴露于不同量的 NO 的单个超薄碲纳米线场效应晶体管 (FET) 器件的电阻温度依赖性的测量揭示了从半导体到金属状态的逐渐转变。随着 NO 浓度的增加,Te 的振动拉曼模式逐渐猝灭,支持了吸附在 Te 上的 NO 呈现金属状态。第一性原理模拟将这些观察归因于吸附在 Te 纳米线上的 NO 中出现的带隙态。我们的结果为环境对低维材料电子结构的影响提供了基本的见解,并可用于设计新型化学传感器。