Department of Chemistry, Mississippi State University , Mississippi State Mississippi 39762, United States.
ACS Appl Mater Interfaces. 2017 Mar 1;9(8):6967-6978. doi: 10.1021/acsami.6b11498. Epub 2017 Feb 13.
Nanostructured nickel cobalt sulfide (NiCoS) has been prepared through a single-step pulse-electrodeposition method. Iron oxide nanosheets at hollow graphite shells (FeO@g-shells) were prepared from graphite-coated iron carbide/α-Fe (g-FeC/Fe) in a two-step annealing/electrochemical cycling process. Electrochemical characterization of the NiCoS and g-FeC/Fe materials showed that both have high specific capacities (206 mAh g and 147 mAh g at 1 A g) and excellent rate capabilities (∼95% and ∼83% retention at 20 A g, respectively). To demonstrate the advantageous pairing of these high rate materials, a full-cell battery with supercapacitor-like power behavior was assembled with NiCoS and g-FeC/Fe as the positive and negative electrodes, respectively. The (NiCoS//g-FeC/Fe) device could be reversibly operated in a 0.0-1.6 V potential window, delivering an impressive specific energy of 89 Wh kg at 1.1 kW kg and a remarkable rate performance of 61 Wh kg at a very high specific power of 38.5 kW kg. Additionally, long-term cycling demonstrated that the asymmetric full cell assembly retained 91% of its initial specific capacity after 2500 cycles at 40 A g. The performance features of this device are among the best for iron oxide/hydroxide and bimetallic sulfide based energy storage devices to date, thereby giving insight into design principles for the next generation high-energy-density devices.
通过一步脉冲电沉积法制备了纳米结构的镍钴硫化物 (NiCoS)。通过两步退火/电化学循环过程,从涂覆石墨的碳化铁/α-Fe (g-FeC/Fe) 制备出具有空心石墨壳的氧化铁纳米片 (FeO@g-shells)。NiCoS 和 g-FeC/Fe 材料的电化学特性表明,它们都具有高比容量(在 1 A g 下为 206 mAh g 和 147 mAh g)和优异的倍率性能(分别在 20 A g 下保持约 95%和 83%)。为了展示这些高倍率材料的优势配对,组装了一个具有超级电容器样功率行为的全电池,其中 NiCoS 和 g-FeC/Fe 分别作为正极和负极。(NiCoS//g-FeC/Fe) 器件可以在 0.0-1.6 V 的电位窗口中可逆运行,在 1.1 kW kg 的功率密度下可提供 89 Wh kg 的令人印象深刻的比能量,在 38.5 kW kg 的非常高的比功率下可提供 61 Wh kg 的出色倍率性能。此外,长期循环表明,不对称全电池组件在 40 A g 下循环 2500 次后保留了初始比容量的 91%。该器件的性能特征是迄今为止基于氧化铁/氢氧化物和双金属硫化物的储能器件中最好的之一,从而为下一代高能量密度器件的设计原则提供了见解。