Suppr超能文献

具有高析氧催化活性的FeS薄膜的电化学制备

Electrochemical fabrication of FeS films with high catalytic activity for oxygen evolution.

作者信息

Wang Wenbin, Xu Ruidong, Yu Bohao, Wang Xuanbin, Feng Suyang

机构信息

Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming 650093 China.

出版信息

RSC Adv. 2019 Oct 9;9(55):31979-31987. doi: 10.1039/c9ra05343c. eCollection 2019 Oct 7.

Abstract

Electrochemical decomposition of water to produce oxygen (O) and hydrogen (H) through an anodic oxygen evolution reaction (OER) and a cathodic hydrogen evolution reaction (HER) is a promising green method for sustainable energy supply. Here, we demonstrate that cauliflower-like S-doped iron microsphere films are materials that can efficiently decompose water as an electrocatalyst for the oxygen evolution reaction. FeS films are prepared by a simple one-step electrodeposition method and directly grow on copper foam from a deep eutectic solvent, ethaline (mixture of choline chloride and ethylene glycol), as a durable and highly efficient catalyst for the OER in 1.0 M KOH. The prepared FeS /CF, as an oxygen-evolving anode, shows remarkable catalytic performance toward the OER with a moderate Tafel slope of 105 mV dec, and require an overpotential of only 340 mV to drive a geometrical catalytic current density of 10 mA cm. In addition, this catalyst also demonstrates strong long-term electrochemical durability. This study provides a simple synthesis route for practical applications of limited transition metal nano catalysts.

摘要

通过阳极析氧反应(OER)和阴极析氢反应(HER)将水电化学分解以产生氧气(O)和氢气(H),是一种很有前景的可持续能源供应绿色方法。在此,我们证明了菜花状硫掺杂铁微球薄膜是一种能够作为析氧反应的电催化剂有效分解水的材料。FeS薄膜通过简单的一步电沉积法制备,并直接在泡沫铜上从深共熔溶剂乙胆碱(氯化胆碱和乙二醇的混合物)中生长,作为在1.0 M KOH中用于OER的耐用且高效的催化剂。制备的FeS/CF作为析氧阳极,对OER表现出显著的催化性能,其Tafel斜率适中,为105 mV dec,驱动几何催化电流密度为10 mA cm仅需340 mV的过电位。此外,这种催化剂还表现出很强的长期电化学耐久性。本研究为有限过渡金属纳米催化剂的实际应用提供了一种简单的合成路线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd9/9072975/ea9316ffea4b/c9ra05343c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验