Chemical and Biomolecular Engineering and ‡Computer Science, Johns Hopkins University , Baltimore, Maryland 21218, United States.
ACS Nano. 2017 Feb 28;11(2):1927-1936. doi: 10.1021/acsnano.6b08008. Epub 2017 Jan 19.
An essential motif for the assembly of biological materials such as actin at the scale of hundreds of nanometers and beyond is a network of one-dimensional fibers with well-defined geometry. Here, we demonstrate the programmed organization of DNA filaments into micron-scale architectures where component filaments are oriented at preprogrammed angles. We assemble L-, T-, and Y-shaped DNA origami junctions that nucleate two or three micron length DNA nanotubes at high yields. The angles between the nanotubes mirror the angles between the templates on the junctions, demonstrating that nanoscale structures can control precisely how micron-scale architectures form. The ability to precisely program filament orientation could allow the assembly of complex filament architectures in two and three dimensions, including circuit structures, bundles, and extended materials.
对于在数百纳米及以上尺度上组装生物材料(如肌动蛋白)而言,一个基本的模式是具有明确定义几何形状的一维纤维网络。在这里,我们展示了 DNA 纤维在微米尺度结构中的程序化组织,其中组成纤维以预定的角度取向。我们组装了 L 形、T 形和 Y 形 DNA 折纸连接,以高产率在纳米管的两端形成两个或三个微米长的 DNA 纳米管。纳米管之间的角度反映了连接上模板之间的角度,这表明纳米级结构可以精确控制微米级结构的形成方式。精确编程纤维取向的能力可以允许在二维和三维空间中组装复杂的纤维结构,包括电路结构、束和扩展材料。