文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy.

作者信息

Chi Qingjia, Yang Zichang, Xu Kang, Wang Chunli, Liang Huaping

机构信息

State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.

Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China.

出版信息

Front Pharmacol. 2020 Jan 28;10:1585. doi: 10.3389/fphar.2019.01585. eCollection 2019.


DOI:10.3389/fphar.2019.01585
PMID:32063844
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6997790/
Abstract

Immunotherapy has received increasing attention due to its low potential side effects and high specificity. For instance, cancer immunotherapy has achieved great success. CpG is a well-known and commonly used immunotherapeutic and vaccine adjuvant, but it has the disadvantage of being unstable and low in efficacy and needs to be transported through an effective nanocarrier. With perfect structural programmability, permeability, and biocompatibility, DNA nanostructures are one of the most promising candidates to deliver immune components to realize immunotherapy. However, the instability and low capability of the payload of ordinary DNA assemblies limit the relevant applications. Consequently, DNA nanostructure with a firm structure, high drug payloads is highly desirable. In the paper, the latest progress of biostable, high-payload DNA nanoassemblies of various structures, including cage-like DNA nanostructure, DNA particles, DNA polypods, and DNA hydrogel, are reviewed. Cage-like DNA structures hold drug molecules firmly inside the structure and leave a large space within the cavity. These DNA nanostructures use their unique structure to carry abundant CpG, and their biocompatibility and size advantages to enter immune cells to achieve immunotherapy for various diseases. Part of the DNA nanostructures can also achieve more effective treatment in conjunction with other functional components such as aPD1, RNA, TLR ligands.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/64ec576de984/fphar-10-01585-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/6f30fcbca902/fphar-10-01585-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/afe30744ca08/fphar-10-01585-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/6724c3b964ad/fphar-10-01585-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/657b91b35c32/fphar-10-01585-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/2c60da875072/fphar-10-01585-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/8ec8b50d7c6e/fphar-10-01585-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/5236992a3d1c/fphar-10-01585-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/bc035a3344e7/fphar-10-01585-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/b967988d22de/fphar-10-01585-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/647d2dca7b35/fphar-10-01585-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/64ec576de984/fphar-10-01585-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/6f30fcbca902/fphar-10-01585-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/afe30744ca08/fphar-10-01585-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/6724c3b964ad/fphar-10-01585-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/657b91b35c32/fphar-10-01585-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/2c60da875072/fphar-10-01585-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/8ec8b50d7c6e/fphar-10-01585-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/5236992a3d1c/fphar-10-01585-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/bc035a3344e7/fphar-10-01585-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/b967988d22de/fphar-10-01585-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/647d2dca7b35/fphar-10-01585-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98c/6997790/64ec576de984/fphar-10-01585-g011.jpg

相似文献

[1]
DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy.

Front Pharmacol. 2020-1-28

[2]
DNA-based nanostructures for RNA delivery.

Med Rev (2021). 2024-3-27

[3]
The Current Progress of Tetrahedral DNA Nanostructure for Antibacterial Application and Bone Tissue Regeneration.

Int J Nanomedicine. 2023

[4]
DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery.

Analyst. 2017-9-8

[5]
Applications of Functional DNA Materials in Immunomodulatory Therapy.

ACS Appl Mater Interfaces. 2022-10-12

[6]
Functional DNA nanostructures for theranostic applications.

Acc Chem Res. 2013-12-31

[7]
Chemotherapeutic drug-DNA hybrid nanostructures for anti-tumor therapy.

Mater Horiz. 2021-1-1

[8]
Understanding the fate of DNA nanostructures inside the cell.

J Mater Chem B. 2020-8-7

[9]
Development of immune cell delivery system using biodegradable injectable polymers for cancer immunotherapy.

Int J Pharm. 2024-3-5

[10]
Self-Assembled DNA Dendrimer Nanoparticle for Efficient Delivery of Immunostimulatory CpG Motifs.

ACS Appl Mater Interfaces. 2017-6-6

引用本文的文献

[1]
Hybrid DNA Origami - Graphene Platform for Electrically-Gated Nanoscale Motion.

Adv Mater Interfaces. 2025-4-21

[2]
Coacervates as enzymatic microreactors.

Chem Soc Rev. 2025-5-6

[3]
DNA dendrimer-based nanocarriers for targeted Co-delivery and controlled release of multiple chemotherapeutic drugs.

RSC Adv. 2025-1-29

[4]
AI-Based Prediction of Protein Corona Composition on DNA Nanostructures.

ACS Nano. 2025-2-4

[5]
Progressive cancer targeting by programmable aptamer-tethered nanostructures.

MedComm (2020). 2024-10-20

[6]
AI-based Prediction of Protein Corona Composition on DNA Nanostructures.

bioRxiv. 2024-8-26

[7]
Plasmid DNA Complexes in Powder Form Studied by Spectroscopic and Diffraction Methods.

Materials (Basel). 2024-7-17

[8]
Advancements in Aptamer-Driven DNA Nanostructures for Precision Drug Delivery.

Adv Sci (Weinh). 2024-7

[9]
Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives.

Nanoscale Adv. 2023-12-19

[10]
Improving DNA nanostructure stability: A review of the biomedical applications and approaches.

Int J Biol Macromol. 2024-3

本文引用的文献

[1]
A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA-inorganic hybrid nanoflowers.

J Mater Chem B. 2017-3-28

[2]
Organic Semiconducting Pro-nanostimulants for Near-Infrared Photoactivatable Cancer Immunotherapy.

Angew Chem Int Ed Engl. 2019-7-30

[3]
Potent anti-tumor immunostimulatory biocompatible nanohydrogel made from DNA.

Nanoscale Res Lett. 2019-6-26

[4]
Adverse Events Following Cancer Immunotherapy: Obstacles and Opportunities.

Trends Immunol. 2019-4-30

[5]
The Growing Development of DNA Nanostructures for Potential Healthcare-Related Applications.

Adv Healthc Mater. 2019-3-7

[6]
Complex wireframe DNA nanostructures from simple building blocks.

Nat Commun. 2019-3-6

[7]
Y-shaped DNA-Mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells.

Anal Chim Acta. 2019-1-9

[8]
Dual Toll-Like Receptor Targeting Liposomal Spherical Nucleic Acids.

Bioconjug Chem. 2019-3-4

[9]
Immunostimulatory activity of Y-shaped DNA nanostructures mediated through the activation of TLR9.

Biomed Pharmacother. 2019-2-21

[10]
Dendritic cell targeted Ccl3- and Xcl1-fusion DNA vaccines differ in induced immune responses and optimal delivery site.

Sci Rep. 2019-2-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索