Kundu Aritra, Dhar Abhishek
International Centre for Theoretical Sciences (TIFR), Survey No. 151, Shivakote, Hesaraghatta Hobli, Bengaluru-560 089, India.
Phys Rev E. 2016 Dec;94(6-1):062130. doi: 10.1103/PhysRevE.94.062130. Epub 2016 Dec 20.
We investigate the form of equilibrium spatiotemporal correlation functions of conserved quantities in the Toda lattice and in other integrable models. From numerical simulations we find that the correlations satisfy ballistic scaling with a remarkable collapse of data from different times. We examine special limiting choices of parameter values, for which the Toda lattice tends to either the harmonic chain or the equal mass hard-particle gas. In both these limiting cases, one can obtain the correlations exactly and we find excellent agreement with the direct Toda simulation results. We also discuss a transformation to "normal mode" variables, as commonly done in hydrodynamic theory of nonintegrable systems, and find that this is useful, to some extent, even for the integrable system. The striking differences between the Toda chain and a truncated version, expected to be nonintegrable, are pointed out.
我们研究了托达晶格以及其他可积模型中守恒量的平衡时空关联函数的形式。通过数值模拟,我们发现这些关联满足弹道标度律,不同时刻的数据有显著的塌缩。我们研究了参数值的特殊极限选择,对于这些选择,托达晶格趋向于谐波链或等质量硬粒子气体。在这两种极限情况下,都可以精确得到关联,并且我们发现与直接的托达模拟结果有很好的一致性。我们还讨论了向“正则模”变量的变换,这在不可积系统的流体动力学理论中是常用的做法,并且发现这在某种程度上甚至对可积系统也是有用的。我们指出了托达链与预期为不可积的截断版本之间的显著差异。