Suppr超能文献

在实验性中风中使用磁共振波谱分类软件进行脑代谢模式分析。

Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke.

作者信息

Jiménez-Xarrié Elena, Davila Myriam, Candiota Ana Paula, Delgado-Mederos Raquel, Ortega-Martorell Sandra, Julià-Sapé Margarida, Arús Carles, Martí-Fàbregas Joan

机构信息

Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni Maria Claret 167, 08025, Barcelona, Spain.

Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Edifici C, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.

出版信息

BMC Neurosci. 2017 Jan 13;18(1):13. doi: 10.1186/s12868-016-0328-x.

Abstract

BACKGROUND

Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier.

RESULTS

A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier ( http://gabrmn.uab.es/?q=sc ). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and mobile lipids (0.85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine (3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity).

CONCLUSION

SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content).

摘要

背景

磁共振波谱(MRS)可在体内提供有关脑实质代谢模式的非侵入性信息。SpectraClassifier软件通过确定可用于客观分类波谱的光谱特征(代谢物)来执行MRS模式识别。我们的目的是使用SpectraClassifier在局灶性缺血性中风大鼠模型中开发梗死演变分类器和脑区分类器。

结果

使用SpectraClassifier(http://gabrmn.uab.es/?q=sc)分析了在回波时间为12毫秒时用7特斯拉磁体从非梗死脑实质、脑室下区和梗死脑实质获得的总共164个单体素质子波谱。这些波谱对应于Sprague-Dawley大鼠(健康大鼠,n = 7)以及中风后第1天(急性期,n = 6只大鼠)和中风后7±1天(亚急性期,n = 14)的中风大鼠。在梗死演变分类器中,乳酸+流动脂质(1.33 ppm)、总肌酸(3.05 ppm)和流动脂质(0.85 ppm)贡献的光谱特征可区分非梗死脑实质(敏感性100%,特异性100%)、梗死急性期(敏感性100%,特异性95%)和梗死亚急性期(敏感性78%,特异性100%)。在脑区分类器中,肌醇(3.62 ppm)和总肌酸(3.04/3.05 ppm)贡献的光谱特征可区分梗死脑实质(敏感性100%,特异性98%)、非梗死脑实质(敏感性84%,特异性84%)和脑室下区(敏感性76%,特异性93%)。

结论

SpectraClassifier识别出了梗死演变(流动脂质积累)和不同脑区(肌醇含量)的候选生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cf2/5237280/d889a4c54707/12868_2016_328_Fig1_HTML.jpg

相似文献

2
Brain choline concentration. Early quantitative marker of ischemia and infarct expansion?
Neurology. 2010 Sep 7;75(10):850-6. doi: 10.1212/WNL.0b013e3181f11bf1.
5
In vivo and ex vivo magnetic resonance spectroscopy of the infarct and the subventricular zone in experimental stroke.
J Cereb Blood Flow Metab. 2015 May;35(5):828-34. doi: 10.1038/jcbfm.2014.257. Epub 2015 Jan 21.
6
A comprehensive analysis of metabolic changes in the salvaged penumbra.
Neuroradiology. 2016 Apr;58(4):409-15. doi: 10.1007/s00234-015-1638-x. Epub 2016 Jan 6.
7
Transverse relaxation of selectively excited metabolites in stroke at 21.1 T.
Magn Reson Med. 2017 Feb;77(2):520-528. doi: 10.1002/mrm.26132. Epub 2016 Feb 1.
9
Proton T2 relaxation of cerebral metabolites during transient global ischemia in rat brain.
Magn Reson Med. 1998 Apr;39(4):647-50. doi: 10.1002/mrm.1910390419.

本文引用的文献

1
Noninvasive Quantification of 2-Hydroxyglutarate in Human Gliomas with IDH1 and IDH2 Mutations.
Cancer Res. 2016 Jan 1;76(1):43-9. doi: 10.1158/0008-5472.CAN-15-0934. Epub 2015 Dec 15.
3
In vivo and ex vivo magnetic resonance spectroscopy of the infarct and the subventricular zone in experimental stroke.
J Cereb Blood Flow Metab. 2015 May;35(5):828-34. doi: 10.1038/jcbfm.2014.257. Epub 2015 Jan 21.
4
5
Clinical proton MR spectroscopy in central nervous system disorders.
Radiology. 2014 Mar;270(3):658-79. doi: 10.1148/radiol.13130531.
7
NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis.
Magn Reson Chem. 2013 Sep;51(9):549-56. doi: 10.1002/mrc.3985. Epub 2013 Jul 4.
8
NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review.
Anal Chim Acta. 2012 Oct 31;750:82-97. doi: 10.1016/j.aca.2012.05.049. Epub 2012 Jun 9.
9
Neuronal-glial alterations in non-primary motor areas in chronic subcortical stroke.
Brain Res. 2012 Jun 29;1463:75-84. doi: 10.1016/j.brainres.2012.04.052. Epub 2012 May 7.
10
Long-term evolution of diffusion tensor indices after temporary experimental ischemic stroke in rats.
Brain Res. 2012 Mar 22;1445:103-10. doi: 10.1016/j.brainres.2012.01.043. Epub 2012 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验