Suppr超能文献

用于生物医学信息物理系统应用的混合脑机接口,采用无线嵌入式脑电图系统。

Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

作者信息

Chai Rifai, Naik Ganesh R, Ling Sai Ho, Nguyen Hung T

机构信息

Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007, Australia.

出版信息

Biomed Eng Online. 2017 Jan 7;16(1):5. doi: 10.1186/s12938-016-0303-x.

Abstract

BACKGROUND

One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals.

METHODS

This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia.

RESULTS

Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

摘要

背景

生物医学网络物理系统的关键挑战之一是将认知神经科学与物理系统集成相结合,以帮助残疾人。脑电图(EEG)已被探索作为一种通过使用脑电信号提供辅助技术的非侵入性方法。

方法

本文展示了一种独特的混合脑机接口(BCI)原型,该原型仅使用两个EEG通道来感知心理任务、稳态视觉诱发电位(SSVEP)和闭眼检测的组合分类。此外,基于微控制器的头戴式电池供电无线EEG传感器与单独的嵌入式系统相结合,以提高便携性、便利性和成本效益。该实验针对五名健康参与者和五名四肢瘫痪患者进行。

结果

总体而言,结果显示健康受试者和四肢瘫痪患者之间的分类准确率相当。对于四肢瘫痪患者目标群体的离线人工神经网络分类,混合BCI系统结合了三项心理任务、三个SSVEP频率和闭眼状态,平均分类准确率为74%,系统平均信息传输率(ITR)为27比特/分钟。对于四肢瘫痪患者的意向性信号实时测试,平均检测成功率为70%,检测速度在2至4秒之间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cae/5234249/5e4b88212fb0/12938_2016_303_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验