Stauber Hagit, Waisman Dan, Korin Netanel, Sznitman Josué
Department of Biomedical Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
Department of Neonatology, Carmel Medical Center, 3436212 Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
Biomicrofluidics. 2017 Jan 10;11(1):014103. doi: 10.1063/1.4973930.
The pulmonary capillary networks (PCNs) embody organ-specific microvasculatures, where blood vessels form dense meshes that maximize the surface area available for gas exchange in the lungs. With characteristic capillary lengths and diameters similar to the size of red blood cells (RBCs), seminal descriptions coined the term "sheet flow" nearly half a century ago to differentiate PCNs from the usual notion of Poiseuille flow in long straight tubes. Here, we revisit in true-scale experiments the original "sheet flow" model and devise for the first time biomimetic microfluidic platforms of organ-specific PCN structures perfused with RBC suspensions at near-physiological hematocrit levels. By implementing RBC tracking velocimetry, our measurements reveal a wide range of heterogonous RBC pathways that coexist synchronously within the PCN; a phenomenon that persists across the broad range of pressure drops and capillary segment sizes investigated. Interestingly, in spite of the intrinsic complexity of the PCN structure and the heterogeneity in RBC dynamics observed at the microscale, the macroscale bulk flow rate versus pressure drop relationship retains its linearity, where the hydrodynamic resistance of the PCN is to a first order captured by the characteristic capillary segment size. To the best of our knowledge, our efforts constitute a first, yet significant, step in exploring systematically the transport dynamics of blood in morphologically inspired capillary networks.
肺毛细血管网络(PCNs)体现了器官特异性的微脉管系统,其中血管形成密集的网状结构,使肺部用于气体交换的表面积最大化。半个世纪前,由于其特征性的毛细血管长度和直径与红细胞(RBCs)大小相似,开创性的描述创造了“片流”一词,以将PCNs与长直管中泊肃叶流的通常概念区分开来。在此,我们在真实尺度实验中重新审视原始的“片流”模型,并首次设计出仿生微流控平台,该平台具有器官特异性PCN结构,并用接近生理血细胞比容水平的RBC悬浮液灌注。通过实施红细胞跟踪测速法,我们的测量揭示了在PCN内同步共存的广泛异质红细胞路径;在所研究的广泛压力降和毛细血管段尺寸范围内,这一现象持续存在。有趣的是,尽管PCN结构具有内在复杂性,且在微观尺度上观察到红细胞动力学存在异质性,但宏观总体流速与压力降的关系保持线性,其中PCN的流体动力学阻力在一阶近似下由特征性毛细血管段尺寸捕获。据我们所知,我们的工作是系统探索形态学启发的毛细血管网络中血液传输动力学的重要第一步。