Suppr超能文献

微流控肺毛细血管网络中微粒的捕获动力学。

Micro-particle entrapment dynamics in microfluidic pulmonary capillary networks.

机构信息

Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

J Biomech. 2022 May;137:111082. doi: 10.1016/j.jbiomech.2022.111082. Epub 2022 Apr 6.

Abstract

The journey of vascular targeted carriers (VTC) in the circulatory system is highly intricate and includes navigation through different vessel structures, such as the vast pulmonary capillary network (PCN) in the lungs where particles can get entrapped and lead to blockage. Here, we leverage microfluidic PCN models to explore, for the first time, micro-particle capillary entrapment, in a well-controlled biophysical environment mimicking human physiological hemodynamics at true scale. This in vitro strategy mimics the challenges of vascular carrier transport during their journey in the smallest capillaries of the body (∼5 µm). Specifically, we explore in the PCN model entrapment dynamics of spherical micro-particles of different diameters (i.e. 3, 4 and 4.5 µm) at different concentrations, comparing their motion in cell-free buffer to that in the presence of red blood cells (RBCs). Notably, while 3 µm particles exhibit undisturbed transport in all of the examined concentrations, both in cell-free buffer and in the presence of RBCs, particles of 4 and 4.5 µm exhibit a concentration-dependent transport where the presence of RBCs leads in fact to reduced entrapment. Our experiments suggest that collisions of micro-particles with RBCs can facilitate their navigability, allowing for carrier transport that would lead otherwise to rapid entrapment in a cell-free environment. Altogether, the proposed preclinical in vitro assays offer rapid screening opportunities for design optimization of VTC transport in capillary networks.

摘要

血管靶向载体(VTC)在循环系统中的行进过程非常复杂,包括穿过不同的血管结构,如肺部的巨大肺毛细血管网络(PCN),其中颗粒可能会被捕获并导致阻塞。在这里,我们利用微流控 PCN 模型首次在模拟人体生理血液动力学的真实比例的受控生物物理环境中探索微粒在毛细血管中的捕获。这种体外策略模拟了血管载体在体内最小的毛细血管(约 5 µm)中运输时所面临的挑战。具体来说,我们在 PCN 模型中探索了不同直径(即 3、4 和 4.5 µm)的球形微粒在不同浓度下的捕获动力学,比较了它们在无细胞缓冲液和存在红细胞(RBCs)时的运动情况。值得注意的是,虽然 3 µm 颗粒在所有检查浓度下的无干扰运输,但在无细胞缓冲液和存在 RBCs 的情况下,4 µm 和 4.5 µm 颗粒的运输表现出浓度依赖性,其中 RBCs 的存在实际上导致捕获减少。我们的实验表明,微粒与 RBCs 的碰撞可以促进它们的可导航性,允许载体运输,否则在无细胞环境中会迅速捕获。总之,拟议的临床前体外测定为优化 VTC 在毛细血管网络中的运输提供了快速筛选机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验