Suppr超能文献

用于形状表示的最优参数映射估计:一种生成式方法。

OPTIMAL PARAMETER MAP ESTIMATION FOR SHAPE REPRESENTATION: A GENERATIVE APPROACH.

作者信息

Elhabian Shireen Y, Agrawal Praful, Whitaker Ross T

机构信息

Scientific Computing and Imaging Institute, University of Utah, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:660-663. doi: 10.1109/ISBI.2016.7493353. Epub 2016 Jun 16.

Abstract

Probabilistic label maps are a useful tool for important medical image analysis tasks such as segmentation, shape analysis, and atlas building. Existing methods typically rely on blurred signed distance maps or smoothed label maps to model uncertainties and shape variabilities, which do not conform to any generative model or estimation process, and are therefore suboptimal. In this paper, we propose to learn probabilistic label maps using a generative model on given set of binary label maps. The proposed approach generalizes well on unseen data while simultaneously capturing the variability in the training samples. Efficiency of the proposed approach is demonstrated for consensus generation and shape-based clustering using synthetic datasets as well as left atrial segmentations from late-gadolinium enhancement MRI.

摘要

概率标签图是用于诸如分割、形状分析和图谱构建等重要医学图像分析任务的有用工具。现有方法通常依赖模糊符号距离图或平滑标签图来对不确定性和形状变异性进行建模,这些方法不符合任何生成模型或估计过程,因此是次优的。在本文中,我们建议在给定的二元标签图集上使用生成模型来学习概率标签图。所提出的方法在未见数据上具有良好的泛化能力,同时能够捕捉训练样本中的变异性。使用合成数据集以及延迟钆增强MRI的左心房分割,证明了所提出方法在一致性生成和基于形状的聚类方面的有效性。

相似文献

1
OPTIMAL PARAMETER MAP ESTIMATION FOR SHAPE REPRESENTATION: A GENERATIVE APPROACH.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:660-663. doi: 10.1109/ISBI.2016.7493353. Epub 2016 Jun 16.
2
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.
3
ShapeCut: Bayesian surface estimation using shape-driven graph.
Med Image Anal. 2017 Aug;40:11-29. doi: 10.1016/j.media.2017.04.005. Epub 2017 Apr 29.
4
Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
Int J Comput Assist Radiol Surg. 2016 May;11(5):817-26. doi: 10.1007/s11548-015-1332-9. Epub 2015 Dec 8.
5
Probabilistic atlas and geometric variability estimation to drive tissue segmentation.
Stat Med. 2014 Sep 10;33(20):3576-99. doi: 10.1002/sim.6156. Epub 2014 Apr 2.
6
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Med Image Anal. 2017 Dec;42:274-287. doi: 10.1016/j.media.2017.08.008. Epub 2017 Sep 1.
7
Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
Comput Methods Programs Biomed. 2019 Oct;179:104976. doi: 10.1016/j.cmpb.2019.07.004. Epub 2019 Jul 19.
8
Robust image segmentation using resampling and shape constraints.
IEEE Trans Pattern Anal Mach Intell. 2007 Jul;29(7):1147-64. doi: 10.1109/TPAMI.2007.1150.
9
Computation of a probabilistic statistical shape model in a maximum-a-posteriori framework.
Methods Inf Med. 2009;48(4):314-9. doi: 10.3414/ME9228. Epub 2009 Jun 19.
10
iSTAPLE: Improved Label Fusion for Segmentation by Combining STAPLE with Image Intensity.
Proc SPIE Int Soc Opt Eng. 2013 Feb;8669. doi: 10.1117/12.2006447. Epub 2013 Mar 13.

引用本文的文献

1
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.

本文引用的文献

1
Shape Based Segmentation of Anatomical Structures in Magnetic Resonance Images.
Comput Vis Biomed Image Appl (2005). 2005 Oct;3765:489-498. doi: 10.1007/11569541_49.
2
A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images.
Med Image Anal. 2014 Jan;18(1):50-62. doi: 10.1016/j.media.2013.09.001. Epub 2013 Sep 13.
3
A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation.
Med Image Anal. 2014 Jan;18(1):9-21. doi: 10.1016/j.media.2013.08.004. Epub 2013 Aug 30.
4
A unified framework for cross-modality multi-atlas segmentation of brain MRI.
Med Image Anal. 2013 Dec;17(8):1181-91. doi: 10.1016/j.media.2013.08.001. Epub 2013 Aug 19.
5
Multi-Atlas Segmentation with Joint Label Fusion.
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
7
A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation.
Neuroimage. 2010 Nov 1;53(2):460-70. doi: 10.1016/j.neuroimage.2010.06.054. Epub 2010 Jun 30.
8
Segmentation of image ensembles via latent atlases.
Med Image Anal. 2010 Oct;14(5):654-65. doi: 10.1016/j.media.2010.05.004. Epub 2010 Jun 4.
9
A generative model for image segmentation based on label fusion.
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.
10
Computing average shaped tissue probability templates.
Neuroimage. 2009 Apr 1;45(2):333-41. doi: 10.1016/j.neuroimage.2008.12.008. Epub 2008 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验