Suppr超能文献

基于形状的磁共振图像中解剖结构分割

Shape Based Segmentation of Anatomical Structures in Magnetic Resonance Images.

作者信息

Pohl Kilian M, Fisher John, Kikinis Ron, Grimson W Eric L, Wells William M

机构信息

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.

Surgical Planning Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Comput Vis Biomed Image Appl (2005). 2005 Oct;3765:489-498. doi: 10.1007/11569541_49.

Abstract

Standard image based segmentation approaches perform poorly when there is little or no contrast along boundaries of different regions. In such cases, segmentation is largely performed manually using prior knowledge of the shape and relative location of the underlying structures combined with partially discernible boundaries. We present an automated approach guided by covariant shape deformations of neighboring structures, which is an additional source of prior information. Captured by a shape atlas, these deformations are transformed into a statistical model using the logistic function. Structure boundaries, anatomical labels, and image inhomogeneities are estimated simultaneously within an Expectation-Maximization formulation of the maximum a posteriori probability estimation problem. We demonstrate the approach on 20 brain magnetic resonance images showing superior performance, particularly in cases where purely image based methods fail.

摘要

当不同区域的边界处对比度很小或没有对比度时,基于标准图像的分割方法效果不佳。在这种情况下,分割很大程度上是通过结合基础结构的形状和相对位置的先验知识以及部分可辨别的边界手动进行的。我们提出了一种由相邻结构的协变形状变形引导的自动化方法,这是先验信息的另一个来源。这些变形由形状图谱捕获,使用逻辑函数将其转换为统计模型。在最大后验概率估计问题的期望最大化公式中,同时估计结构边界、解剖标签和图像不均匀性。我们在20幅脑磁共振图像上展示了该方法,显示出卓越的性能,特别是在基于纯图像的方法失败的情况下。

相似文献

2
Coupling Statistical Segmentation and PCA Shape Modeling.耦合统计分割与主成分分析形状建模
Med Image Comput Comput Assist Interv. 2004 Sep;3216:151-159. doi: 10.1007/978-3-540-30135-6_19.
7
Modeling interaction for segmentation of neighboring structures.用于相邻结构分割的交互建模。
IEEE Trans Inf Technol Biomed. 2009 Mar;13(2):252-62. doi: 10.1109/TITB.2008.2010492. Epub 2009 Jan 20.
8
Joint Prior Models of Neighboring Objects for 3D Image Segmentation.用于3D图像分割的相邻对象联合先验模型
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2004 Jun 27;1:I314-I319. doi: 10.1109/CVPR.2004.1315048.

引用本文的文献

1
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.用于估计多标签概率图谱的最优生成模型。
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.
2
OPTIMAL PARAMETER MAP ESTIMATION FOR SHAPE REPRESENTATION: A GENERATIVE APPROACH.用于形状表示的最优参数映射估计:一种生成式方法。
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:660-663. doi: 10.1109/ISBI.2016.7493353. Epub 2016 Jun 16.
6
Three-dimensional coupled-object segmentation using symmetry and tissue type information.使用对称和组织类型信息进行三维耦合目标分割。
Comput Med Imaging Graph. 2010 Apr;34(3):236-49. doi: 10.1016/j.compmedimag.2009.10.002. Epub 2009 Nov 22.
8
Using the logarithm of odds to define a vector space on probabilistic atlases.使用对数优势在概率图谱上定义向量空间。
Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.
9
Logarithm odds maps for shape representation.用于形状表示的对数几率图。
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955-63. doi: 10.1007/11866763_117.

本文引用的文献

2
Joint Prior Models of Neighboring Objects for 3D Image Segmentation.用于3D图像分割的相邻对象联合先验模型
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2004 Jun 27;1:I314-I319. doi: 10.1109/CVPR.2004.1315048.
3
Adaptive segmentation of MRI data.MRI 数据的自适应分割。
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
6
Automatically parcellating the human cerebral cortex.自动分割人类大脑皮层。
Cereb Cortex. 2004 Jan;14(1):11-22. doi: 10.1093/cercor/bhg087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验