IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2496-2509. doi: 10.1109/TPAMI.2016.2646685. Epub 2017 Jan 11.
We propose novel finite-dimensional spaces of well-behaved transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.
我们提出了新颖的有限维良好变换空间。这些变换是通过(快速且高精度)积分连续分段仿射速度场得到的。所提出的方法简单但表现力强,轻松处理可选约束(例如,体积保持和/或边界条件),并支持方便的建模选择,如平滑先验和粗到细分析。重要的是,由于其快速似然评估部分以及其他特性,所提出的方法有助于在丰富的变换空间中进行可处理的推断,包括使用马尔可夫链蒙特卡罗方法。其应用包括但不限于:单调回归(更一般地,在单调函数上进行优化);建模累积分布函数或直方图;时间扭曲;图像扭曲;图像配准;实时仿射图像编辑;图像分类器的数据增强。我们的基于 GPU 的代码是公开可用的。