Arsigny Vincent, Commowick Olivier, Pennec Xavier, Ayache Nicholas
INRIA Sophia--Epidaure Project, 2004 Route des Lucioles BP 93 06902 Sophia Antipolis, France.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):924-31. doi: 10.1007/11866565_113.
In this article, we focus on the computation of statistics of invertible geometrical deformations (i.e., diffeomorphisms), based on the generalization to this type of data of the notion of principal logarithm. Remarkably, this logarithm is a simple 3D vector field, and is well-defined for diffeomorphisms close enough to the identity. This allows to perform vectorial statistics on diffeomorphisms, while preserving the invertibility constraint, contrary to Euclidean statistics on displacement fields. We also present here two efficient algorithms to compute logarithms of diffeomorphisms and exponentials of vector fields, whose accuracy is studied on synthetic data. Finally, we apply these tools to compute the mean of a set of diffeomorphisms, in the context of a registration experiment between an atlas an a database of 9 T1 MR images of the human brain.
在本文中,我们基于将主对数概念推广到此类数据,专注于可逆几何变形(即微分同胚)统计量的计算。值得注意的是,这个对数是一个简单的三维向量场,对于足够接近恒等映射的微分同胚是定义良好的。这使得我们能够对微分同胚进行向量统计,同时保留可逆性约束,这与位移场的欧几里得统计不同。我们还在此提出了两种计算微分同胚对数和向量场指数的高效算法,并在合成数据上研究了它们的精度。最后,我们将这些工具应用于计算一组微分同胚的均值,这是在一个图谱与9张人类大脑T1磁共振图像数据库之间的配准实验背景下进行的。