Suppr超能文献

主动自定步速学习实现具有成本效益的渐进式人脸识别。

Active Self-Paced Learning for Cost-Effective and Progressive Face Identification.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Jan;40(1):7-19. doi: 10.1109/TPAMI.2017.2652459. Epub 2017 Jan 16.

Abstract

This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning (AL) and self-paced learning (SPL), our framework is capable of automatically annotating new instances and incorporating them into training under weak expert recertification. We first initialize the classifier using a few annotated samples for each individual, and extract image features using the convolutional neural nets. Then, a number of candidates are selected from the unannotated samples for classifier updating, in which we apply the current classifiers ranking the samples by the prediction confidence. In particular, our approach utilizes the high-confidence and low-confidence samples in the self-paced and the active user-query way, respectively. The neural nets are later fine-tuned based on the updated classifiers. Such heuristic implementation is formulated as solving a concise active SPL optimization problem, which also advances the SPL development by supplementing a rational dynamic curriculum constraint. The new model finely accords with the "instructor-student-collaborative" learning mode in human education. The advantages of this proposed framework are two-folds: i) The required number of annotated samples is significantly decreased while the comparable performance is guaranteed. A dramatic reduction of user effort is also achieved over other state-of-the-art active learning techniques. ii) The mixture of SPL and AL effectively improves not only the classifier accuracy compared to existing AL/SPL methods but also the robustness against noisy data. We evaluate our framework on two challenging datasets, which include hundreds of persons under diverse conditions, and demonstrate very promising results. Please find the code of this project at: http://hcp.sysu.edu.cn/projects/aspl/.

摘要

本文旨在开发一种新颖的、具有成本效益的人脸识别框架,该框架可以随着不同个体的人脸图像的增加,逐步维护一批分类器。通过自然结合两种最近兴起的技术:主动学习(AL)和自定步学习(SPL),我们的框架能够在弱专家重新认证的情况下,自动标注新实例并将其纳入训练。我们首先为每个个体使用少数几个标注样本初始化分类器,并使用卷积神经网络提取图像特征。然后,从未标注的样本中选择一些候选样本进行分类器更新,在此过程中,我们根据预测置信度对样本进行分类器排序。具体来说,我们的方法分别利用自定步和主动用户查询方式中的高置信度和低置信度样本。基于更新后的分类器,对神经网络进行微调。这种启发式实现被表述为求解简洁的主动 SPL 优化问题,通过补充合理的动态课程约束,推动 SPL 的发展。新模型与人类教育中的“教师-学生-协作”学习模式非常吻合。该框架的优势有两点:i)在保证可比性能的同时,显著减少了标注样本的数量。与其他最先进的主动学习技术相比,用户的工作量也大幅减少。ii)SPL 和 AL 的混合不仅有效提高了分类器的准确性,而且提高了对噪声数据的鲁棒性。我们在两个具有挑战性的数据集上评估了我们的框架,这些数据集包括数百个在各种条件下的人,并取得了非常有前景的结果。请在 http://hcp.sysu.edu.cn/projects/aspl/ 找到本项目的代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验