Suppr超能文献

基于半监督稀疏表示的分类方法在少量有标签样本情况下的人脸识别

Semi-Supervised Sparse Representation Based Classification for Face Recognition With Insufficient Labeled Samples.

出版信息

IEEE Trans Image Process. 2017 May;26(5):2545-2560. doi: 10.1109/TIP.2017.2675341. Epub 2017 Mar 1.

Abstract

This paper addresses the problem of face recognition when there is only few, or even only a single, labeled examples of the face that we wish to recognize. Moreover, these examples are typically corrupted by nuisance variables, both linear (i.e., additive nuisance variables, such as bad lighting and wearing of glasses) and non-linear (i.e., non-additive pixel-wise nuisance variables, such as expression changes). The small number of labeled examples means that it is hard to remove these nuisance variables between the training and testing faces to obtain good recognition performance. To address the problem, we propose a method called semi-supervised sparse representation-based classification. This is based on recent work on sparsity, where faces are represented in terms of two dictionaries: a gallery dictionary consisting of one or more examples of each person, and a variation dictionary representing linear nuisance variables (e.g., different lighting conditions and different glasses). The main idea is that: 1) we use the variation dictionary to characterize the linear nuisance variables via the sparsity framework and 2) prototype face images are estimated as a gallery dictionary via a Gaussian mixture model, with mixed labeled and unlabeled samples in a semi-supervised manner, to deal with the non-linear nuisance variations between labeled and unlabeled samples. We have done experiments with insufficient labeled samples, even when there is only a single labeled sample per person. Our results on the AR, Multi-PIE, CAS-PEAL, and LFW databases demonstrate that the proposed method is able to deliver significantly improved performance over existing methods.

摘要

本文针对仅有少量甚至仅有一个我们希望识别的人脸的标记示例的人脸识别问题。此外,这些示例通常会受到干扰变量的干扰,包括线性(即,添加性干扰变量,如不良照明和戴眼镜)和非线性(即,非加性像素级干扰变量,如表情变化)。标记示例的数量较少意味着很难在训练和测试人脸之间消除这些干扰变量以获得良好的识别性能。为了解决这个问题,我们提出了一种称为半监督稀疏表示分类的方法。这是基于最近关于稀疏性的研究,其中人脸是用两个字典来表示的:一个是包含每个人的一个或多个示例的图库字典,另一个是代表线性干扰变量(例如,不同的照明条件和不同的眼镜)的变化字典。主要思想是:1)我们使用变化字典通过稀疏框架来描述线性干扰变量;2)原型人脸图像通过高斯混合模型作为图库字典来估计,混合了有监督和无监督的样本,以处理标记和未标记样本之间的非线性干扰变化。我们在 AR、Multi-PIE、CAS-PEAL 和 LFW 数据库上进行了实验,即使每个人只有一个标记样本,结果也表明,所提出的方法能够显著提高现有方法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验