IEEE Trans Image Process. 2016 Nov;25(11):5331-5344. doi: 10.1109/TIP.2016.2605920. Epub 2016 Sep 2.
Extracting local features from 3D shapes is an important and challenging task that usually requires carefully designed 3D shape descriptors. However, these descriptors are hand-crafted and require intensive human intervention with prior knowledge. To tackle this issue, we propose a novel deep learning model, namely circle convolutional restricted Boltzmann machine (CCRBM), for unsupervised 3D local feature learning. CCRBM is specially designed to learn from raw 3D representations. It effectively overcomes obstacles such as irregular vertex topology, orientation ambiguity on the 3D surface, and rigid or slightly non-rigid transformation invariance in the hierarchical learning of 3D data that cannot be resolved by the existing deep learning models. Specifically, by introducing the novel circle convolution, CCRBM holds a novel ring-like multi-layer structure to learn 3D local features in a structure preserving manner. Circle convolution convolves across 3D local regions via rotating a novel circular sector convolution window in a consistent circular direction. In the process of circle convolution, extra points are sampled in each 3D local region and projected onto the tangent plane of the center of the region. In this way, the projection distances in each sector window are employed to constitute a novel local raw 3D representation called projection distance distribution (PDD). In addition, to eliminate the initial location ambiguity of a sector window, the Fourier transform modulus is used to transform the PDD into the Fourier domain, which is then conveyed to CCRBM. Experiments using the learned local features are conducted on three aspects: global shape retrieval, partial shape retrieval, and shape correspondence. The experimental results show that the learned local features outperform other state-of-the-art 3D shape descriptors.
从三维形状中提取局部特征是一项重要且具有挑战性的任务,通常需要精心设计的三维形状描述符。然而,这些描述符是人工设计的,需要具备先验知识的大量人工干预。为了解决这个问题,我们提出了一种新颖的深度学习模型,即圆形卷积受限玻尔兹曼机(CCRBM),用于无监督的三维局部特征学习。CCRBM经过专门设计,可从原始三维表示中进行学习。它有效地克服了诸如不规则顶点拓扑、三维表面上的方向模糊性以及三维数据分层学习中的刚性或轻微非刚性变换不变性等现有深度学习模型无法解决的障碍。具体而言,通过引入新颖的圆形卷积,CCRBM拥有一种新颖的环状多层结构,以结构保留的方式学习三维局部特征。圆形卷积通过在一致的圆周方向上旋转一个新颖的圆形扇形卷积窗口,在三维局部区域上进行卷积。在圆形卷积过程中,在每个三维局部区域中采样额外的点,并将其投影到该区域中心的切平面上。通过这种方式,利用每个扇形窗口中的投影距离来构成一种称为投影距离分布(PDD)的新颖局部原始三维表示。此外,为了消除扇形窗口的初始位置模糊性,使用傅里叶变换模量将PDD变换到傅里叶域,然后将其传递给CCRBM。使用所学习的局部特征进行的实验在三个方面展开:全局形状检索、局部形状检索和形状对应。实验结果表明,所学习的局部特征优于其他现有的三维形状描述符。