Suppr超能文献

非侵入式人体-机器接口中的静态与动态解码算法

Static Versus Dynamic Decoding Algorithms in a Non-Invasive Body-Machine Interface.

作者信息

Seanez-Gonzalez Ismael, Pierella Camilla, Farshchiansadegh Ali, Thorp Elias B, Abdollahi Farnaz, Pedersen Jessica P, Sandro Mussa-Ivaldi Ferdinando A

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Jul;25(7):893-905. doi: 10.1109/TNSRE.2016.2640360. Epub 2016 Dec 15.

Abstract

In this study, we consider a non-invasive body-machine interface that captures body motions still available to people with spinal cord injury (SCI) and maps them into a set of signals for controlling a computer user interface while engaging in a sustained level of mobility and exercise. We compare the effectiveness of two decoding algorithms that transform a high-dimensional body-signal vector into a lower dimensional control vector on six subjects with high-level SCI and eight controls. One algorithm is based on a static map from current body signals to the current value of the control vector set through principal component analysis (PCA), the other on dynamic mapping a segment of body signals to the value and the temporal derivatives of the control vector set through a Kalman filter. SCI and control participants performed straighter and smoother cursor movements with the Kalman algorithm during center-out reaching, but their movements were faster and more precise when using PCA. All participants were able to use the BMI's continuous, two-dimensional control to type on a virtual keyboard and play pong, and performance with both algorithms was comparable. However, seven of eight control participants preferred PCA as their method of virtual wheelchair control. The unsupervised PCA algorithm was easier to train and seemed sufficient to achieve a higher degree of learnability and perceived ease of use.

摘要

在本研究中,我们考虑一种非侵入式人体-机器接口,它能捕捉脊髓损伤(SCI)患者仍可进行的身体动作,并将其映射为一组信号,以便在保持一定活动水平和进行锻炼时控制计算机用户界面。我们比较了两种解码算法的有效性,这两种算法将高维身体信号向量转换为低维控制向量,实验对象包括六名高位SCI患者和八名对照者。一种算法基于通过主成分分析(PCA)从当前身体信号到控制向量当前值的静态映射,另一种基于通过卡尔曼滤波器将一段身体信号动态映射到控制向量的值及其时间导数。在进行中心外伸展时,SCI患者和对照参与者使用卡尔曼算法时的光标移动更直且更平滑,但使用PCA时他们的动作更快且更精确。所有参与者都能够使用BMI的连续二维控制在虚拟键盘上打字并玩乒乓球,两种算法的表现相当。然而,八名对照参与者中有七人更喜欢PCA作为他们控制虚拟轮椅的方法。无监督PCA算法更容易训练,似乎足以实现更高程度的可学习性和易用性。

相似文献

1
Static Versus Dynamic Decoding Algorithms in a Non-Invasive Body-Machine Interface.非侵入式人体-机器接口中的静态与动态解码算法
IEEE Trans Neural Syst Rehabil Eng. 2017 Jul;25(7):893-905. doi: 10.1109/TNSRE.2016.2640360. Epub 2016 Dec 15.

本文引用的文献

3
Upper Body-Based Power Wheelchair Control Interface for Individuals With Tetraplegia.用于四肢瘫痪患者的基于上身的电动轮椅控制接口
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):249-60. doi: 10.1109/TNSRE.2015.2439240. Epub 2015 Jun 1.
6
A body-machine interface for the control of a 2D cursor.用于控制二维光标移动的人机接口。
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650508. doi: 10.1109/ICORR.2013.6650508.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验