Suppr超能文献

重新映射残余协调以控制辅助设备并恢复运动功能。

Remapping residual coordination for controlling assistive devices and recovering motor functions.

作者信息

Pierella Camilla, Abdollahi Farnaz, Farshchiansadegh Ali, Pedersen Jessica, Thorp Elias B, Mussa-Ivaldi Ferdinando A, Casadio Maura

机构信息

Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genova, Italy; Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.

Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.

出版信息

Neuropsychologia. 2015 Dec;79(Pt B):364-76. doi: 10.1016/j.neuropsychologia.2015.08.024. Epub 2015 Sep 2.

Abstract

The concept of human motor redundancy attracted much attention since the early studies of motor control, as it highlights the ability of the motor system to generate a great variety of movements to achieve any well-defined goal. The abundance of degrees of freedom in the human body may be a fundamental resource in the learning and remapping problems that are encountered in human-machine interfaces (HMIs) developments. The HMI can act at different levels decoding brain signals or body signals to control an external device. The transformation from neural signals to device commands is the core of research on brain-machine interfaces (BMIs). However, while BMIs bypass completely the final path of the motor system, body-machine interfaces (BoMIs) take advantage of motor skills that are still available to the user and have the potential to enhance these skills through their consistent use. BoMIs empower people with severe motor disabilities with the possibility to control external devices, and they concurrently offer the opportunity to focus on achieving rehabilitative goals. In this study we describe a theoretical paradigm for the use of a BoMI in rehabilitation. The proposed BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer screen. This mapping is obtained by principal component analysis (PCA). We hypothesize that the BoMI can be specifically programmed to engage the users in functional exercises aimed at partial recovery of motor skills, while simultaneously controlling the cursor and carrying out functional tasks, e.g. playing games. Specifically, PCA allows us to select not only the subspace that is most comfortable for the user to act upon, but also the degrees of freedom and coordination patterns that the user has more difficulty engaging. In this article, we describe a family of map modifications that can be made to change the motor behavior of the user. Depending on the characteristics of the impairment of each high-level spinal cord injury (SCI) survivor, we can make modifications to restore a higher level of symmetric mobility (left versus right), or to increase the strength and range of motion of the upper body that was spared by the injury. Results showed that this approach restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom in the participants involved in the control of the interface. This is a proof of concept that our BoMI may be used concurrently to control assistive devices and reach specific rehabilitative goals. Engaging the users in functional and entertaining tasks while practicing the interface and changing the map in the proposed ways is a novel approach to rehabilitation treatments facilitated by portable and low-cost technologies.

摘要

自早期运动控制研究以来,人类运动冗余的概念就备受关注,因为它突出了运动系统产生多种运动以实现任何明确目标的能力。人体丰富的自由度可能是人机接口(HMI)开发中遇到的学习和重新映射问题的一种基本资源。HMI可以在不同层面上发挥作用,解码大脑信号或身体信号来控制外部设备。从神经信号到设备命令的转换是脑机接口(BMI)研究的核心。然而,虽然BMI完全绕过了运动系统的最终路径,但身体机接口(BoMI)利用了用户仍然具备的运动技能,并有可能通过持续使用来增强这些技能。BoMI使严重运动障碍患者有机会控制外部设备,同时也提供了专注于实现康复目标的契机。在本研究中,我们描述了一种在康复中使用BoMI的理论范式。所提出的BoMI将用户残余的上半身活动能力重新映射到计算机屏幕上光标的两个坐标。这种映射是通过主成分分析(PCA)获得的。我们假设,可以对BoMI进行专门编程,让用户参与旨在部分恢复运动技能的功能锻炼,同时控制光标并执行功能任务,例如玩游戏。具体而言,PCA不仅使我们能够选择用户操作起来最舒适的子空间,还能选择用户更难参与的自由度和协调模式。在本文中,我们描述了一系列可以进行的映射修改,以改变用户的运动行为。根据每位高位脊髓损伤(SCI)幸存者损伤的特征,我们可以进行修改,以恢复更高水平的对称活动能力(左侧与右侧),或增加损伤未累及的上半身的力量和活动范围。结果表明,这种方法恢复了身体左右两侧的对称性,参与接口控制的参与者所有自由度的活动能力和力量都有所增加。这证明了我们的BoMI可以同时用于控制辅助设备并实现特定的康复目标。让用户在练习接口并以建议的方式更改映射的同时参与功能和娱乐任务,是一种由便携式低成本技术推动的康复治疗新方法。

相似文献

1
Remapping residual coordination for controlling assistive devices and recovering motor functions.
Neuropsychologia. 2015 Dec;79(Pt B):364-76. doi: 10.1016/j.neuropsychologia.2015.08.024. Epub 2015 Sep 2.
2
Body machine interfaces for neuromotor rehabilitation: a case study.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:397-401. doi: 10.1109/EMBC.2014.6943612.
3
Body-Machine Interface Enables People With Cervical Spinal Cord Injury to Control Devices With Available Body Movements: Proof of Concept.
Neurorehabil Neural Repair. 2017 May;31(5):487-493. doi: 10.1177/1545968317693111. Epub 2017 Feb 1.
4
Body machine interface: remapping motor skills after spinal cord injury.
IEEE Int Conf Rehabil Robot. 2011;2011:5975384. doi: 10.1109/ICORR.2011.5975384.
5
Guiding functional reorganization of motor redundancy using a body-machine interface.
J Neuroeng Rehabil. 2020 May 11;17(1):61. doi: 10.1186/s12984-020-00681-7.
6
Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1100-1105. doi: 10.1109/ICORR.2017.8009396.
8
A body machine interface based on inertial sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6120-4. doi: 10.1109/EMBC.2014.6945026.
9
Learning new movements after paralysis: Results from a home-based study.
Sci Rep. 2017 Jul 6;7(1):4779. doi: 10.1038/s41598-017-04930-z.
10
A novel virtual robotic platform for controlling six degrees of freedom assistive devices with body-machine interfaces.
Comput Biol Med. 2024 Aug;178:108778. doi: 10.1016/j.compbiomed.2024.108778. Epub 2024 Jun 25.

引用本文的文献

1
Learning to Control Complex Robots Using High-Dimensional Body-Machine Interfaces.
ACM Trans Hum Robot Interact. 2024 Sep;13(3). doi: 10.1145/3630264. Epub 2024 Aug 26.
2
Intrinsic somatosensory feedback supports motor control and learning to operate artificial body parts.
J Neural Eng. 2022 Jan 24;19(1):016006. doi: 10.1088/1741-2552/ac47d9.
4
Guiding functional reorganization of motor redundancy using a body-machine interface.
J Neuroeng Rehabil. 2020 May 11;17(1):61. doi: 10.1186/s12984-020-00681-7.
5
Age-dependent differences in learning to control a robot arm using a body-machine interface.
Sci Rep. 2019 Feb 13;9(1):1960. doi: 10.1038/s41598-018-38092-3.
6
Data-driven body-machine interface for the accurate control of drones.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):7913-7918. doi: 10.1073/pnas.1718648115. Epub 2018 Jul 16.
7
Reorganization of finger coordination patterns through motor exploration in individuals after stroke.
J Neuroeng Rehabil. 2017 Sep 11;14(1):90. doi: 10.1186/s12984-017-0300-8.
8
Learning new movements after paralysis: Results from a home-based study.
Sci Rep. 2017 Jul 6;7(1):4779. doi: 10.1038/s41598-017-04930-z.
9
Body-Machine Interface Enables People With Cervical Spinal Cord Injury to Control Devices With Available Body Movements: Proof of Concept.
Neurorehabil Neural Repair. 2017 May;31(5):487-493. doi: 10.1177/1545968317693111. Epub 2017 Feb 1.
10
Static Versus Dynamic Decoding Algorithms in a Non-Invasive Body-Machine Interface.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jul;25(7):893-905. doi: 10.1109/TNSRE.2016.2640360. Epub 2016 Dec 15.

本文引用的文献

1
Comparing Two Computational Mechanisms for Explaining Functional Recovery in Robot-Therapy of Stroke Survivors.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2012 Jun;2012:1488-1493. doi: 10.1109/BioRob.2012.6290914.
2
Upper Body-Based Power Wheelchair Control Interface for Individuals With Tetraplegia.
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):249-60. doi: 10.1109/TNSRE.2015.2439240. Epub 2015 Jun 1.
3
Encoder-decoder optimization for brain-computer interfaces.
PLoS Comput Biol. 2015 Jun 1;11(6):e1004288. doi: 10.1371/journal.pcbi.1004288. eCollection 2015 Jun.
4
A body machine interface based on inertial sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6120-4. doi: 10.1109/EMBC.2014.6945026.
5
Body machine interfaces for neuromotor rehabilitation: a case study.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:397-401. doi: 10.1109/EMBC.2014.6943612.
6
Brain-machine interfaces in neurorehabilitation of stroke.
Neurobiol Dis. 2015 Nov;83:172-9. doi: 10.1016/j.nbd.2014.11.025. Epub 2014 Dec 7.
7
Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.
Brain Res. 2015 Jan 21;1595:51-73. doi: 10.1016/j.brainres.2014.11.020. Epub 2014 Nov 15.
8
White matter microstructure changes induced by motor skill learning utilizing a body machine interface.
Neuroimage. 2014 Mar;88:32-40. doi: 10.1016/j.neuroimage.2013.10.066. Epub 2013 Nov 9.
9
Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
Neural Comput. 2013 Jul;25(7):1693-731. doi: 10.1162/NECO_a_00460. Epub 2013 Apr 22.
10
Brain-machine interface in chronic stroke rehabilitation: a controlled study.
Ann Neurol. 2013 Jul;74(1):100-8. doi: 10.1002/ana.23879. Epub 2013 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验