Suppr超能文献

一种基于神经网络集成的模糊积分方法,用于分析功能磁共振成像(fMRI)数据以对多个受试者的认知状态进行分类。

A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.

作者信息

Cacha L A, Parida S, Dehuri S, Cho S-B, Poznanski R R

机构信息

1 Laser Center, Faculty of Science, Ibnu Sina Institute for Scientific Industrial Research (ISI-SIR), Universiti Teknologi, Malaysia.

2 Carrier Software and Core Network Department, Huawei Technologies India Pvt Ltd Near EPIP Industrial Area, Whitefield Bangalore - 560 066, Karnataka, India.

出版信息

J Integr Neurosci. 2016 Dec;15(4):593-606. doi: 10.1142/S0219635216500345. Epub 2017 Jan 17.

Abstract

The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.

摘要

功能磁共振成像(fMRI)随时间产生的大量体素给有效分析带来了重大挑战。为了估计大脑活动的解码准确性,需要快速、准确且可靠的分类器。尽管机器学习分类器看起来很有前景,但单个分类器都有其自身的局限性。为了解决这一局限性,本文提出了一种基于神经网络集成的方法,用于分析fMRI数据以进行认知状态分类,以便在多个受试者中应用。同样,模糊积分(FI)方法已被用作组合不同分类器的有效工具。FI方法促成了一种分类器集成技术的发展,该技术通过减少错误分类、偏差和方差,比任何单个分类器的性能都更好。所提出的方法成功地以高分类准确率对多个受试者的不同认知状态进行了分类。将应用集成神经网络方法时的性能提升与单个神经网络的性能提升进行比较,有力地表明了所提出方法的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验