Suppr超能文献

基于事件相关电位的动态多尺度卷积人脸识别模型。

A Dynamic Multi-Scale Convolution Model for Face Recognition Using Event-Related Potentials.

机构信息

School of Automation, Qingdao University, Qingdao 266071, China.

State Key Laboratory of Multimodal Artifcial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Sensors (Basel). 2024 Jul 5;24(13):4368. doi: 10.3390/s24134368.

Abstract

With the development of data mining technology, the analysis of event-related potential (ERP) data has evolved from statistical analysis of time-domain features to data-driven techniques based on supervised and unsupervised learning. However, there are still many challenges in understanding the relationship between ERP components and the representation of familiar and unfamiliar faces. To address this, this paper proposes a model based on Dynamic Multi-Scale Convolution for group recognition of familiar and unfamiliar faces. This approach uses generated weight masks for cross-subject familiar/unfamiliar face recognition using a multi-scale model. The model employs a variable-length filter generator to dynamically determine the optimal filter length for time-series samples, thereby capturing features at different time scales. Comparative experiments are conducted to evaluate the model's performance against SOTA models. The results demonstrate that our model achieves impressive outcomes, with a balanced accuracy rate of 93.20% and an F1 score of 88.54%, outperforming the methods used for comparison. The ERP data extracted from different time regions in the model can also provide data-driven technical support for research based on the representation of different ERP components.

摘要

随着数据挖掘技术的发展,事件相关电位(ERP)数据的分析已经从时域特征的统计分析发展到基于监督和无监督学习的数据驱动技术。然而,在理解 ERP 成分与熟悉和不熟悉面孔的表示之间的关系方面仍然存在许多挑战。为了解决这个问题,本文提出了一种基于动态多尺度卷积的模型,用于对熟悉和不熟悉的面孔进行群体识别。该方法使用生成的权值掩模,通过多尺度模型对跨主体的熟悉/不熟悉面孔进行识别。该模型采用可变长度滤波器生成器,根据时间序列样本动态确定最佳滤波器长度,从而捕获不同时间尺度的特征。通过对比实验评估了该模型与 SOTA 模型的性能。结果表明,我们的模型取得了令人印象深刻的结果,平衡准确率为 93.20%,F1 得分为 88.54%,优于所比较的方法。模型中从不同时间区域提取的 ERP 数据也可以为基于不同 ERP 成分表示的研究提供数据驱动的技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d36f/11244416/483ee8c37575/sensors-24-04368-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验