Wallace Robert J, Snelling Timothy J, McCartney Christine A, Tapio Ilma, Strozzi Francesco
Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB16 5BD, UK.
Green Technology, Natural Resources Institute Finland, Jokioinen, Finland.
Genet Sel Evol. 2017 Jan 16;49(1):9. doi: 10.1186/s12711-017-0285-6.
Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.
瘤胃发酵产生的甲烷排放对人类活动产生的温室气体(GHG)总排放量有显著贡献。新的元组学技术正开始彻底改变我们对瘤胃微生物群落结构、代谢潜力和代谢活性的理解。在此,我们探讨这些与温室气体排放相关的进展。基于小亚基核糖体RNA序列分析的瘤胃微生物群落分析尚不能预测个体动物或处理方式的甲烷排放。很少有宏基因组学研究与温室气体排放直接相关。在这些研究中,高甲烷排放者和低甲烷排放者之间丰度不同的主要基因包括参与甲烷生成的古菌基因,以及其他一些显然与甲烷代谢无关的基因。与迄今为止的分类分析不同,宏基因组的基因集可能具有预测价值。此外,宏基因组分析比仅进行分类描述能更好地预测代谢功能,因为不同的分类群共享具有相同功能的基因。宏转录组学是对mRNA转录本丰度的研究,应有助于理解微生物活动的动态而非基因丰度;迄今为止,只有一项研究将产甲烷基因的表达水平与甲烷排放联系起来,而基因丰度未能做到这一点。宏蛋白质组学描述了生态系统中存在的蛋白质,因此可以说是微生物代谢的更好指标。二维聚丙烯酰胺凝胶电泳和鸟枪法肽测序方法都已用于瘤胃分析。在我们未发表的研究中,两种方法都显示出大量的古菌产甲烷酶,但都无法区分高排放者和低排放者。代谢组学可以采取几种形式,这些形式似乎对甲烷排放具有预测价值;瘤胃代谢物、乳脂肪酸谱、粪便长链醇和尿液代谢物都显示出了有前景的结果。瘤胃微生物氨基酸代谢是反刍动物过量氮排放的根源,但从目前已发表的元组学研究中只能得出关于氮排放的间接推断。元组学数据的注释依赖于瘤胃微生物条目不丰富的数据库。因此,洪盖特1000项目和全球瘤胃普查计划对于改进序列/代谢信息的解读至关重要。