Suppr超能文献

由共组装和自组装肽的异质文库制备纳米纤维电纺支架。

Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides.

作者信息

Maleki Mahboubeh, Natalello Antonino, Pugliese Raffaele, Gelain Fabrizio

机构信息

IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy.

Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.

出版信息

Acta Biomater. 2017 Mar 15;51:268-278. doi: 10.1016/j.actbio.2017.01.038. Epub 2017 Jan 16.

Abstract

UNLABELLED

Self-assembling (SAPs) and co-assembling peptides (CAPs) are driving increasing enthusiasm as synthetic but biologically inspired biomaterials amenable of easy functionalization for regenerative medicine. On the other hand, electrospinning (ES) is a versatile technique useful for tailoring the nanostructures of various biomaterials into scaffolds resembling the extracellular matrices found in organs and tissues. The synergistic merging of these two approaches is a long-awaited advance in nanomedicine that has not been deeply documented so far. In the present work, we describe the successful ES of a library of diverse SAPs and CAPs into biomimetic nanofibrous mats. Our results suggest that suitable ES solutions are characterized by high concentrations of peptides, providing backbone physical chain entanglements, and by random coil/α-helical conformations while β-sheet aggregation may be detrimental to spinnability. The resulting peptide fibers feature interconnected seamless mats with nanofibers average diameters ranging from ∼100nm to ∼400nm. Also, peptide chemical nature and ES set up parameters play pivotal roles in determining the conformational transitions and morphological properties of the produced nanofibers. Far from being an exhaustive description of the just-opened novel field of ES-assembled peptides, this seminal work aims at shining a light on a still missing general theory for the production of electrospun peptidic biomaterials bringing together the spatial, biochemical and biomimetic of these two techniques into unique scaffolds for tissue engineering.

STATEMENT OF SIGNIFICANCE

Construction of peptide hydrogels has received considerable attention due to their potential as nanostructures amenable of easy functionalization and capable of creating microenvironments suited for culturing cells and triggering tissue regeneration. They display a superior biocompatibility unmatched by other known synthetic biomaterials so far. However, their applications are confined to body fillers because most of them do spontaneously form hydrogels, while effective tissue regeneration often requires well-defined fibrous scaffolds. In this work, we developed electrospun fibers of various peptides (cross-beta self-assembling, hierarchically assembling, functionalized, co-assembling) and we provided a deep understanding of the crucial phenomena to be taken into account when peptides fibers fabrication. These results open new venues for exploring novel regenerative applications of peptide nanofibrous scaffolds.

摘要

未标注

自组装肽(SAPs)和共组装肽(CAPs)作为合成的、但受生物启发的生物材料,因其易于功能化以用于再生医学而引发了越来越高的热情。另一方面,静电纺丝(ES)是一种通用技术,可用于将各种生物材料的纳米结构加工成类似于器官和组织中细胞外基质的支架。这两种方法的协同融合是纳米医学中期待已久的进展,迄今为止尚未有深入的文献报道。在本工作中,我们描述了将多种SAPs和CAPs文库成功静电纺丝成仿生纳米纤维垫的过程。我们的结果表明,合适的静电纺丝溶液的特征在于高浓度的肽,其提供主链物理链缠结,以及随机卷曲/α-螺旋构象,而β-折叠聚集可能不利于可纺性。所得的肽纤维具有相互连接的无缝垫,纳米纤维平均直径范围为约100nm至约400nm。此外,肽的化学性质和静电纺丝设置参数在确定所生产的纳米纤维的构象转变和形态性质方面起着关键作用。这项开创性工作远非对静电纺丝组装肽这一刚刚开启的新领域的详尽描述,其旨在为静电纺肽生物材料的生产揭示一种仍缺失的通用理论,将这两种技术的空间、生化和仿生特性整合到用于组织工程的独特支架中。

意义声明

肽水凝胶的构建因其作为易于功能化的纳米结构的潜力以及能够创建适合培养细胞和触发组织再生的微环境而受到了相当大的关注。它们表现出迄今为止其他已知合成生物材料无法比拟的卓越生物相容性。然而,它们的应用仅限于身体填充物,因为它们中的大多数不会自发形成水凝胶,而有效的组织再生通常需要明确的纤维支架。在这项工作中,我们开发了各种肽(交叉β自组装、分层组装、功能化、共组装)的静电纺丝纤维,并深入了解了肽纤维制造时需要考虑的关键现象。这些结果为探索肽纳米纤维支架的新型再生应用开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验