Suppr超能文献

微米级离子电流整流在聚电解质刷修饰微管中的表现。

Micrometer-Scale Ion Current Rectification at Polyelectrolyte Brush-Modified Micropipets.

机构信息

Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190, China.

University of Chinese Academy of Sciences , Beijing 100049, China.

出版信息

J Am Chem Soc. 2017 Feb 1;139(4):1396-1399. doi: 10.1021/jacs.6b11696. Epub 2017 Jan 20.

Abstract

Here we report for the first time that ion current rectification (ICR) can be observed at the micrometer scale in symmetric electrolyte solution with polyimidazolium brush (PimB)-modified micropipets, which we call micrometer-scale ion current rectification (MICR). To qualitatively understand MICR, a three-layer model including a charged layer, an electrical double layer, and a bulk layer is proposed, which could also be extended to understanding ICR at the nanoscale. Based on this model, we propose that when charges in the charged layer are comparable with those in the bulk layer, ICR would occur regardless of whether the electrical double layers are overlapped. Finite element simulations based on the solution of Poisson and Nernst-Planck equations and in situ confocal laser scanning microscopy results qualitatively validate the experimental observations and the proposed three-layer model. Moreover, possible factors influencing MICR, including the length of PimB, electrolyte concentration, and the radius of the pipet, are investigated and discussed. This study successfully extends ICR to the micrometer scale and thus opens a new door to the development of ICR-based devices by taking advantage of ease-in-manipulation and designable surface chemistry of micropipets.

摘要

本文首次报道,在聚咪唑刷(PimB)修饰的微管内的对称电解质溶液中,可以观察到微米级的离子电流整流(ICR),我们称之为微米级离子电流整流(MICR)。为了定性地理解 MICR,提出了一个包括带电层、双电层和体相层的三层模型,该模型也可以扩展到理解纳米尺度的 ICR。基于该模型,我们提出,当带电层中的电荷与体相层中的电荷相当时,无论双电层是否重叠,都会发生 ICR。基于泊松和能斯特-普朗克方程的解以及在位共聚焦激光扫描显微镜结果的有限元模拟,定性地验证了实验观察和所提出的三层模型。此外,还研究和讨论了可能影响 MICR 的因素,包括 PimB 的长度、电解质浓度和微管的半径。本研究成功地将 ICR 扩展到了微米尺度,从而通过利用微管易于操作和可设计的表面化学性质,为基于 ICR 的器件的发展开辟了新的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验