Mandell Michael A, Beverley Stephen M
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E801-E810. doi: 10.1073/pnas.1619265114. Epub 2017 Jan 17.
In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in "safe" immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2 mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections.
在大多数自然感染或康复后,少量利什曼原虫寄生虫会在宿主体内长期存在。持续性寄生虫在通过伴随免疫过程再次感染时对预防疾病病理的保护性免疫中发挥着至关重要的作用,同时在传播和再激活中也起着重要作用,但人们对其了解甚少。一个关键问题是持续性寄生虫是否会进行复制,我们设计了几种方法来探究持续性感染中的少量寄生虫。我们发现有两种持续性硕大利什曼原虫群体:一种快速复制,类似于急性感染中的寄生虫,另一种几乎没有复制的迹象。在“安全”的免疫赦免细胞类型中未发现持续性利什曼原虫,而是存在于巨噬细胞和树突状细胞(DCs)中,其中约60%表达诱导型一氧化氮合酶(iNOS)。值得注意的是,iNOS细胞内的寄生虫显示出正常的形态和基因组完整性,并且与iNOS细胞内的寄生虫相比用BrdU标记相当,这表明这些寄生虫可能出乎意料地对NO具有抗性。尽管如此,由于持续性寄生虫数量随时间大致保持恒定,它们的复制意味着同样会发生持续的破坏。用减毒的lpg2突变体也获得了类似的结果,lpg2突变体是一种方便的模型,由于高尔基体GDP甘露糖转运体的缺失,它能迅速进入持续状态而不诱导病理变化。这些数据揭示了利什曼原虫的持续性和伴随免疫,提出了一个模型,即寄生虫库无限期地自我重新繁殖,而一些后代在抗原呈递细胞中被清除,从而刺激免疫。这个模型可能与理解对其他持续性病原体感染的免疫有关。