Purves Randy W, Prasad Satendra, Belford Michael, Vandenberg Albert, Dunyach Jean-Jacques
Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada.
ThermoFisher Scientific, 355 River Oaks Parkway, San Jose, CA, USA.
J Am Soc Mass Spectrom. 2017 Mar;28(3):525-538. doi: 10.1007/s13361-016-1587-6. Epub 2017 Jan 17.
The implementation of an aerodynamic mechanism to improve ion sampling between nanoelectrospray (n-ESI) and FAIMS was recently reported for proteomic analyses. This investigation explores the new FAIMS interface for small molecule analysis at high liquid flow rates and includes an examination of key differences in ionization between heated-ESI (HESI) and n-ESI. The sheath gas, critical for desolvation with HESI, affects FAIMS operation as higher FAIMS gas flow rates are required to achieve sufficient desolvation. Gas flow rate experiments also uncovered m/z discrimination with the conventional design as larger (slower moving) m/z ions experienced larger signal intensity losses than smaller m/z ions due to the desolvation gas flow having a greater drag effect on slower moving ions. The modified inlet in new FAIMS dampens the gas drag, making the HESI source more amenable as less m/z bias and significantly lower %RSD values were observed. Furthermore, a larger radius inner electrode in new FAIMS enables significantly higher E/N (electric field/number gas density) to be achieved using the existing waveform generator. Thus, new FAIMS signal intensities using only nitrogen improved 1.25- to 2-fold compared with the conventional design and 50% helium. Adding helium to the new FAIMS gave no significant improvements. The larger inner electrode also decreased ion focusing capabilities, and the effect on peak separation and ion intensity was examined in detail. The peak capacity of new FAIMS was approximately double that of conventional FAIMS; separation of seven low m/z ions gave a peak capacity of 37.7 using the gas additive 2-propanol. Graphical Abstract ᅟ.
最近有报道称,为了进行蛋白质组学分析,采用了一种空气动力学机制来改善纳米电喷雾(n-ESI)和流动管离子迁移谱(FAIMS)之间的离子采样。本研究探索了用于高液体流速下小分子分析的新型FAIMS接口,并研究了加热电喷雾电离(HESI)和n-ESI在电离方面的关键差异。鞘气对于HESI去溶剂化至关重要,它会影响FAIMS的运行,因为需要更高的FAIMS气体流速来实现充分的去溶剂化。气体流速实验还发现,传统设计存在质荷比歧视,由于去溶剂化气流对移动较慢的离子具有更大的拖曳效应,较大(移动较慢)质荷比的离子比较小质荷比的离子经历更大的信号强度损失。新型FAIMS中改进的入口减弱了气体拖曳,使HESI源更适用,因为观察到的质荷比偏差更小,相对标准偏差(%RSD)值显著更低。此外,新型FAIMS中较大半径的内电极能够使用现有的波形发生器实现显著更高的电场/气体密度比(E/N)。因此,仅使用氮气时,新型FAIMS的信号强度比传统设计和50%氦气的情况提高了1.25至2倍。向新型FAIMS中添加氦气并没有显著改善。较大的内电极也降低了离子聚焦能力,并详细研究了其对峰分离和离子强度的影响。新型FAIMS的峰容量约为传统FAIMS的两倍;使用气体添加剂2-丙醇分离七个低质荷比离子时,峰容量为37.7。图形摘要ᅟ 。