Suppr超能文献

理解量子限域内前所未有的硅-铍键的稳定性。

Understanding the Stability of an Unprecedented Si-Be Bond within Quantum Confinement.

作者信息

Maneri Asma Harun, Krishnamurty Sailaja, Joshi Krati

机构信息

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.

Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, India.

出版信息

ACS Omega. 2023 Apr 12;8(16):14814-14822. doi: 10.1021/acsomega.3c01133. eCollection 2023 Apr 25.

Abstract

As of today, the Si-Be bond remains underexplored in the literature, and therefore its anomalous behavior continues to be an unsolved puzzle to date. Therefore, the present study aims at evaluating the integrity of an unprecedented Si-Be bond within quantum confinement. To accomplish this, first-principles-based calculation are performed on Be-doped silicon clusters with atomic sizes 6, 7, and 10. Silicon clusters are sequentially doped with one, two, and three Be atoms, and their thermal response is registered in the temperature range of 200-1500 K, which discloses several research findings. During the course of the simulations, the clusters face various thermal events such as solid cluster phase, rapid structural metamorphosis, and fragmentation. Si-Be nanoalloy clusters are noted to be thermally stable at lower temperatures (200-700 K); however, they begins to disintegrate earlier at a temperature as low as 800 K. This lower stability is attributed to the weak nature of Si and Be heteroatomic interactions, which is corroborated from the structural and electronic property analysis of the doped clusters. In addition to this, the performance of Be-doped clusters at finite temperatures is also compared with the thermal response of two other popular systems, viz., C- and B-doped silicon clusters.

摘要

截至目前,硅 - 铍键在文献中仍未得到充分研究,因此其异常行为至今仍是一个未解之谜。因此,本研究旨在评估量子限域内一种前所未有的硅 - 铍键的完整性。为实现这一目标,对原子尺寸为6、7和10的铍掺杂硅团簇进行了基于第一性原理的计算。硅团簇依次掺杂一个、两个和三个铍原子,并记录它们在200 - 1500 K温度范围内的热响应,这揭示了几个研究发现。在模拟过程中,团簇面临各种热事件,如固态团簇相、快速结构变形和碎片化。硅 - 铍纳米合金团簇在较低温度(200 - 700 K)下被认为是热稳定的;然而,它们在低至800 K的温度下就开始较早地分解。这种较低的稳定性归因于硅和铍异原子相互作用的较弱性质,这从掺杂团簇的结构和电子性质分析中得到了证实。除此之外,还将有限温度下铍掺杂团簇的性能与另外两个常见体系,即碳和硼掺杂硅团簇的热响应进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3acf/10134223/ad1d8c7956ee/ao3c01133_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验