Suppr超能文献

眼球运动脑机接口中意图扫视方向的解码。

Decoding of intended saccade direction in an oculomotor brain-computer interface.

机构信息

Center for Computational Neuroscience and Neural Technology, Boston University, 677 Beacon Street, Boston, MA 02215, United States of America. Graduate Program in Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215, United States of America.

出版信息

J Neural Eng. 2017 Aug;14(4):046007. doi: 10.1088/1741-2552/aa5a3e.

Abstract

OBJECTIVE

To date, invasive brain-computer interface (BCI) research has largely focused on replacing lost limb functions using signals from the hand/arm areas of motor cortex. However, the oculomotor system may be better suited to BCI applications involving rapid serial selection from spatial targets, such as choosing from a set of possible words displayed on a computer screen in an augmentative and alternative communication (AAC) application. Here we aimed to demonstrate the feasibility of a BCI utilizing the oculomotor system.

APPROACH

We developed a chronic intracortical BCI in monkeys to decode intended saccadic eye movement direction using activity from multiple frontal cortical areas.

MAIN RESULTS

Intended saccade direction could be decoded in real time with high accuracy, particularly at contralateral locations. Accurate decoding was evident even at the beginning of the BCI session; no extensive BCI experience was necessary. High-frequency (80-500 Hz) local field potential magnitude provided the best performance, even over spiking activity, thus simplifying future BCI applications. Most of the information came from the frontal and supplementary eye fields, with relatively little contribution from dorsolateral prefrontal cortex.

SIGNIFICANCE

Our results support the feasibility of high-accuracy intracortical oculomotor BCIs that require little or no practice to operate and may be ideally suited for 'point and click' computer operation as used in most current AAC systems.

摘要

目的

迄今为止,侵入性脑机接口(BCI)研究主要集中在手/臂运动皮层区域的信号上,以替代丧失的肢体功能。然而,眼动系统可能更适合涉及快速串行选择空间目标的 BCI 应用,例如在增强和替代交流(AAC)应用中从计算机屏幕上显示的一组可能的单词中进行选择。在这里,我们旨在展示利用眼动系统的 BCI 的可行性。

方法

我们在猴子中开发了一种慢性皮层内 BCI,以使用来自多个额皮质区域的活动来解码预期的扫视眼动方向。

主要结果

可以实时以高精度解码预期的扫视方向,尤其是在对侧位置。即使在 BCI 会话开始时,也可以进行准确的解码;不需要广泛的 BCI 经验。高频(80-500 Hz)局部场电位幅度提供了最佳性能,甚至超过了尖峰活动,从而简化了未来的 BCI 应用。大部分信息来自额眼和补充眼区,而来自背外侧前额叶皮质的贡献相对较小。

意义

我们的结果支持高精度皮层内眼动 BCI 的可行性,这些 BCI 几乎不需要或不需要实践即可操作,并且可能非常适合当前大多数 AAC 系统中使用的“点击”计算机操作。

相似文献

引用本文的文献

1
Decoding Continuous Tracking Eye Movements from Cortical Spiking Activity.从皮层尖峰活动中解码连续跟踪眼动
Int J Neural Syst. 2025 Jan;35(1):2450070. doi: 10.1142/S0129065724500709. Epub 2024 Nov 15.
3
6
Persistent Spiking Activity Underlies Working Memory.持续的尖峰活动是工作记忆的基础。
J Neurosci. 2018 Aug 8;38(32):7020-7028. doi: 10.1523/JNEUROSCI.2486-17.2018.
7
On memories, neural ensembles and mental flexibility.关于记忆、神经集合体和心理灵活性。
Neuroimage. 2017 Aug 15;157:297-313. doi: 10.1016/j.neuroimage.2017.05.068. Epub 2017 Jun 9.

本文引用的文献

2
Brain-machine interface for eye movements.用于眼球运动的脑机接口。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17630-5. doi: 10.1073/pnas.1419977111. Epub 2014 Nov 24.
5
High-performance neuroprosthetic control by an individual with tetraplegia.高位截瘫患者的高性能神经假体控制。
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.
9
Chronux: a platform for analyzing neural signals.Chronux:一个用于分析神经信号的平台。
J Neurosci Methods. 2010 Sep 30;192(1):146-51. doi: 10.1016/j.jneumeth.2010.06.020. Epub 2010 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验