Suppr超能文献

全长新生蛋白在翻译后核糖体循环中的可能作用。

A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling.

作者信息

Das Debasis, Samanta Dibyendu, Bhattacharya Arpita, Basu Arunima, Das Anindita, Ghosh Jaydip, Chakrabarti Abhijit, Das Gupta Chanchal

机构信息

Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India.

Department of Microbiology, Raidighi College, Raidighi, 24 Parganas (S), West Bengal, India.

出版信息

PLoS One. 2017 Jan 18;12(1):e0170333. doi: 10.1371/journal.pone.0170333. eCollection 2017.

Abstract

Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein-EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here.

摘要

细菌细胞中每个翻译起始循环都需要游离的50S和30S核糖体亚基,这些亚基源自上一循环中70S核糖体的翻译后解离。文献表明,核糖体循环因子(RRF)和延伸因子G(EF-G)协同作用,可使70S从模型终止后复合物中稳定解离,这两种因子与连接50S和30S的rRNA桥B2a/B2b相互作用。在这样的实验模型中,从未认真考虑过全长新生蛋白的作用。我们观察到全长新生蛋白从翻译后核糖体的50S上相对缓慢地释放,在此过程中,其在体内rRNA以及在大肠杆菌S30提取物的体外翻译中的足迹。我们之前报道过,一些化学展开的蛋白质,如牛碳酸酐酶(BCA)、乳酸脱氢酶(LDH)、苹果酸脱氢酶(MDH)、溶菌酶、卵清蛋白等,当代替全长新生蛋白添加到游离的70S中时,也会与23S rRNA的相同RNA区域相互作用。有趣的是,发现减缓全长未折叠蛋白C末端释放的rRNA核苷酸紧邻B2a/B2b桥。这表明在整个进化过程中存在一个潜在的重要化学反应。在这里,我们着手探究未折叠蛋白构象在分裂游离或终止后70S中的保守作用。本文讨论了RRF-EFG依赖性和可能的新生蛋白-EFG依赖性核糖体循环途径在细菌中可能如何相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51f4/5242463/49327cd819a1/pone.0170333.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验