Suppr超能文献

基于稀疏约束卷积回归的细胞核分割

NUCLEI SEGMENTATION VIA SPARSITY CONSTRAINED CONVOLUTIONAL REGRESSION.

作者信息

Zhou Yin, Chang Hang, Barner Kenneth E, Parvin Bahram

机构信息

Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A; University of Delaware, Newark, DE, U.S.A.

Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A; Department of Electrical and Computer Engineering, University of California, Riverside, U.S.A.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:1284-1287. doi: 10.1109/ISBI.2015.7164109. Epub 2015 Jul 23.

Abstract

Automated profiling of nuclear architecture, in histology sections, can potentially help predict the clinical outcomes. However, the task is challenging as a result of nuclear pleomorphism and cellular states (e.g., cell fate, cell cycle), which are compounded by the batch effect (e.g., variations in fixation and staining). Present methods, for nuclear segmentation, are based on human-designed features that may not effectively capture intrinsic nuclear architecture. In this paper, we propose a novel approach, called sparsity constrained convolutional regression (SCCR), for nuclei segmentation. Specifically, given raw image patches and the corresponding annotated binary masks, our algorithm jointly learns a bank of convolutional filters and a sparse linear regressor, where the former is used for feature extraction, and the latter aims to produce a likelihood for each pixel being nuclear region or background. During classification, the pixel label is simply determined by a thresholding operation applied on the likelihood map. The method has been evaluated using the benchmark dataset collected from The Cancer Genome Atlas (TCGA). Experimental results demonstrate that our method outperforms traditional nuclei segmentation algorithms and is able to achieve competitive performance compared to the state-of-the-art algorithm built upon human-designed features with biological prior knowledge.

摘要

在组织学切片中对细胞核结构进行自动分析,有可能有助于预测临床结果。然而,由于细胞核多形性和细胞状态(如细胞命运、细胞周期),这项任务具有挑战性,而批效应(如固定和染色的变化)又使情况变得更加复杂。目前用于细胞核分割的方法是基于人为设计的特征,可能无法有效地捕捉细胞核的内在结构。在本文中,我们提出了一种名为稀疏约束卷积回归(SCCR)的新方法用于细胞核分割。具体来说,给定原始图像块和相应的带注释的二值掩码,我们的算法联合学习一组卷积滤波器和一个稀疏线性回归器,前者用于特征提取,后者旨在为每个像素属于核区域或背景生成一个似然值。在分类过程中,像素标签简单地由应用于似然图的阈值操作确定。该方法已使用从癌症基因组图谱(TCGA)收集的基准数据集进行了评估。实验结果表明,我们的方法优于传统的细胞核分割算法,并且与基于具有生物学先验知识的人为设计特征构建的最新算法相比,能够实现具有竞争力的性能。

相似文献

1
NUCLEI SEGMENTATION VIA SPARSITY CONSTRAINED CONVOLUTIONAL REGRESSION.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:1284-1287. doi: 10.1109/ISBI.2015.7164109. Epub 2015 Jul 23.
2
Classification of Histology Sections via Multispectral Convolutional Sparse Coding.
Conf Comput Vis Pattern Recognit Workshops. 2014 Jun;2014:3081-3088. doi: 10.1109/CVPR.2014.394.
3
A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images.
Artif Intell Med. 2020 Jul;107:101897. doi: 10.1016/j.artmed.2020.101897. Epub 2020 Jun 2.
4
Joint fully convolutional and graph convolutional networks for weakly-supervised segmentation of pathology images.
Med Image Anal. 2021 Oct;73:102183. doi: 10.1016/j.media.2021.102183. Epub 2021 Jul 24.
7
A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.
Med Biol Eng Comput. 2019 Sep;57(9):2027-2043. doi: 10.1007/s11517-019-02008-8. Epub 2019 Jul 26.
8
Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.
Comput Methods Programs Biomed. 2018 Jun;159:59-69. doi: 10.1016/j.cmpb.2018.01.027. Epub 2018 Feb 6.
9
Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.
Med Image Anal. 2019 Dec;58:101563. doi: 10.1016/j.media.2019.101563. Epub 2019 Sep 18.
10
Prostate segmentation by sparse representation based classification.
Med Phys. 2012 Oct;39(10):6372-87. doi: 10.1118/1.4754304.

引用本文的文献

1
Enhanced Nuclei Segmentation and Classification via Category Descriptors in the SAM Model.
Bioengineering (Basel). 2024 Mar 21;11(3):294. doi: 10.3390/bioengineering11030294.
2
Recent Advances of Deep Learning for Computational Histopathology: Principles and Applications.
Cancers (Basel). 2022 Feb 25;14(5):1199. doi: 10.3390/cancers14051199.
3
Generative Adversarial Networks in Digital Pathology and Histopathological Image Processing: A Review.
J Pathol Inform. 2021 Nov 3;12:43. doi: 10.4103/jpi.jpi_103_20. eCollection 2021.
4
Learning Based Segmentation of CT Brain Images: Application to Postoperative Hydrocephalic Scans.
IEEE Trans Biomed Eng. 2018 Aug;65(8):1871-1884. doi: 10.1109/TBME.2017.2783305. Epub 2017 Dec 13.
5
Integrative Analysis of Cellular Morphometric Context Reveals Clinically Relevant Signatures in Lower Grade Glioma.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:72-80. doi: 10.1007/978-3-319-46720-7_9. Epub 2016 Oct 2.
6
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.
J Pathol Inform. 2016 Jul 26;7:29. doi: 10.4103/2153-3539.186902. eCollection 2016.
7
Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.
IEEE Rev Biomed Eng. 2016;9:234-63. doi: 10.1109/RBME.2016.2515127. Epub 2016 Jan 6.

本文引用的文献

1
2
Stacked Predictive Sparse Decomposition for Classification of Histology Sections.
Int J Comput Vis. 2015 May;113(1):3-18. doi: 10.1007/s11263-014-0790-9. Epub 2014 Dec 23.
3
Classification of Histology Sections via Multispectral Convolutional Sparse Coding.
Conf Comput Vis Pattern Recognit Workshops. 2014 Jun;2014:3081-3088. doi: 10.1109/CVPR.2014.394.
4
Robust selection-based sparse shape model for lung cancer image segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):404-12. doi: 10.1007/978-3-642-40760-4_51.
5
Classification of Tumor Histology via Morphometric Context.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013 Jun 23;2013. doi: 10.1109/CVPR.2013.286.
6
Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association.
IEEE Trans Med Imaging. 2013 Apr;32(4):670-82. doi: 10.1109/TMI.2012.2231420. Epub 2012 Dec 4.
7
Morphometic analysis of TCGA glioblastoma multiforme.
BMC Bioinformatics. 2011 Dec 20;12:484. doi: 10.1186/1471-2105-12-484.
9
Improved automatic detection and segmentation of cell nuclei in histopathology images.
IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52. doi: 10.1109/TBME.2009.2035102. Epub 2009 Oct 30.
10
Graphical methods for quantifying macromolecules through bright field imaging.
Bioinformatics. 2009 Apr 15;25(8):1070-5. doi: 10.1093/bioinformatics/btn426. Epub 2008 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验