文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Hover-Net:多组织组织学图像中细胞核的同时分割和分类。

Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.

机构信息

Mathematics for Real World Systems Centre for Doctoral Training, University of Warwick, UK; Department of Computer Science, University of Warwick, UK.

Department of Computer Science and Engineering, Sejong University, South Korea.

出版信息

Med Image Anal. 2019 Dec;58:101563. doi: 10.1016/j.media.2019.101563. Epub 2019 Sep 18.


DOI:10.1016/j.media.2019.101563
PMID:31561183
Abstract

Nuclear segmentation and classification within Haematoxylin & Eosin stained histology images is a fundamental prerequisite in the digital pathology work-flow. The development of automated methods for nuclear segmentation and classification enables the quantitative analysis of tens of thousands of nuclei within a whole-slide pathology image, opening up possibilities of further analysis of large-scale nuclear morphometry. However, automated nuclear segmentation and classification is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intra-class variability such as the nuclei of tumour cells. Additionally, some of the nuclei are often clustered together. To address these challenges, we present a novel convolutional neural network for simultaneous nuclear segmentation and classification that leverages the instance-rich information encoded within the vertical and horizontal distances of nuclear pixels to their centres of mass. These distances are then utilised to separate clustered nuclei, resulting in an accurate segmentation, particularly in areas with overlapping instances. Then, for each segmented instance the network predicts the type of nucleus via a devoted up-sampling branch. We demonstrate state-of-the-art performance compared to other methods on multiple independent multi-tissue histology image datasets. As part of this work, we introduce a new dataset of Haematoxylin & Eosin stained colorectal adenocarcinoma image tiles, containing 24,319 exhaustively annotated nuclei with associated class labels.

摘要

苏木精和伊红染色组织学图像中的核分割和分类是数字病理学工作流程的基本前提。自动化核分割和分类方法的发展使得对整个幻灯片病理学图像中的数万个体细胞核进行定量分析成为可能,为大规模核形态计量学的进一步分析开辟了可能性。然而,自动化核分割和分类面临着一个重大挑战,即存在几种不同类型的核,其中一些核表现出较大的类内可变性,例如肿瘤细胞核。此外,一些核通常聚集在一起。为了解决这些挑战,我们提出了一种新颖的卷积神经网络,用于同时进行核分割和分类,该网络利用了核像素的垂直和水平距离与其质心之间编码的实例丰富信息。然后利用这些距离将聚集的核分开,从而实现准确的分割,特别是在重叠实例的区域。然后,对于每个分割的实例,网络通过专门的上采样分支预测核的类型。与其他方法相比,我们在多个独立的多组织组织学图像数据集上展示了最先进的性能。作为这项工作的一部分,我们引入了一个新的苏木精和伊红染色结直肠癌图像瓦片数据集,其中包含 24319 个经过详尽注释的细胞核,并附有相关的类别标签。

相似文献

[1]
Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.

Med Image Anal. 2019-9-18

[2]
AER-Net: Attention-Enhanced Residual Refinement Network for Nuclei Segmentation and Classification in Histology Images.

Sensors (Basel). 2024-11-11

[3]
SONNET: A Self-Guided Ordinal Regression Neural Network for Segmentation and Classification of Nuclei in Large-Scale Multi-Tissue Histology Images.

IEEE J Biomed Health Inform. 2022-7

[4]
A survey on cell nuclei instance segmentation and classification: Leveraging context and attention.

Med Image Anal. 2025-1

[5]
A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images.

Artif Intell Med. 2020-7

[6]
MILD-Net: Minimal information loss dilated network for gland instance segmentation in colon histology images.

Med Image Anal. 2018-12-20

[7]
HoLy-Net: Segmentation of histological images of diffuse large B-cell lymphoma.

Comput Biol Med. 2024-3

[8]
CellViT: Vision Transformers for precise cell segmentation and classification.

Med Image Anal. 2024-5

[9]
CryoNuSeg: A dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images.

Comput Biol Med. 2021-5

[10]
HistoNeXt: dual-mechanism feature pyramid network for cell nuclear segmentation and classification.

BMC Med Imaging. 2025-1-7

引用本文的文献

[1]
Computational pathology annotation enhances the resolution and interpretation of breast cancer spatial transcriptomics data.

NPJ Precis Oncol. 2025-9-9

[2]
Patritumab deruxtecan in HRHER2 advanced breast cancer: a phase 2 trial.

Nat Med. 2025-9-4

[3]
Deep learning-driven whole-slide image analysis predicts chemo-resistance and motility subtypes in muscle-invasive bladder cancer.

Genes Genomics. 2025-9-4

[4]
: Generating Histopathology Cell Topology with a Diffusion Model.

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025-6

[5]
From Pixels to Precision-A Dual-Stream Deep Network for Pathological Nuclei Segmentation.

Bioengineering (Basel). 2025-8-12

[6]
Histopathology-based protein multiplex generation using deep learning.

Nat Mach Intell. 2025

[7]
Robust object counting through distribution uncertainty matching and optimal transport.

Sci Rep. 2025-8-19

[8]
ROSIE: AI generation of multiplex immunofluorescence staining from histopathology images.

Nat Commun. 2025-8-16

[9]
Enhanced HoVerNet Optimization for Precise Nuclei Segmentation in Diffuse Large B-Cell Lymphoma.

Diagnostics (Basel). 2025-8-4

[10]
An effective multistage mouse model of esophageal carcinogenesis for preclinical and computational pathology applications.

Neoplasia. 2025-8-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索