Suppr超能文献

布里渊流动细胞术用于细胞核的无标记力学表型分析。

Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA.

Canon U.S. Life Sciences, Inc., 9800 Medical Center Drive, Suite C-120, Rockville, MD 20850, USA.

出版信息

Lab Chip. 2017 Feb 14;17(4):663-670. doi: 10.1039/c6lc01443g.

Abstract

The mechanical properties of the nucleus are closely related to many cellular functions; thus, measuring nuclear mechanical properties is crucial to our understanding of cell biomechanics and could lead to intrinsic biophysical contrast mechanisms to classify cells. Although many technologies have been developed to characterize cell stiffness, they generally require contact with the cell and thus cannot provide direct information on nuclear mechanical properties. In this work, we developed a flow cytometry technique based on an all-optical measurement to measure nuclear mechanical properties by integrating Brillouin spectroscopy with microfluidics. Brillouin spectroscopy probes the mechanical properties of material via light scattering, so it is inherently label-free, non-contact, and non-invasive. Using a measuring beam spot of submicron size, we can measure several regions within each cell as they flow, which enables us to classify cell populations based on their nuclear mechanical signatures at a throughput of ∼200 cells per hour. We show that Brillouin cytometry has sufficient sensitivity to detect physiologically-relevant changes in nuclear stiffness by probing the effect of drug-induced chromatin decondensation.

摘要

核的机械性能与许多细胞功能密切相关;因此,测量核的机械性能对于我们理解细胞生物力学至关重要,并可能导致内在的生物物理对比机制来对细胞进行分类。尽管已经开发出许多技术来表征细胞硬度,但它们通常需要与细胞接触,因此无法提供核机械性能的直接信息。在这项工作中,我们开发了一种基于全光学测量的流式细胞术技术,通过将布里渊光谱学与微流控技术相结合来测量核的机械性能。布里渊光谱学通过光散射探测材料的机械性能,因此它本质上是无标记、非接触和非侵入性的。通过使用亚微米大小的测量光束光斑,我们可以在每个细胞流动时测量其中的几个区域,这使我们能够以约 200 个细胞/小时的通量根据核机械特征对细胞群体进行分类。我们通过探测药物诱导的染色质去浓缩对核硬度的影响,表明布里渊细胞术具有足够的灵敏度来检测生理相关的核硬度变化。

相似文献

1
Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus.
Lab Chip. 2017 Feb 14;17(4):663-670. doi: 10.1039/c6lc01443g.
2
Quantitative Phase Imaging Flow Cytometry for Ultra-Large-Scale Single-Cell Biophysical Phenotyping.
Cytometry A. 2019 May;95(5):510-520. doi: 10.1002/cyto.a.23765. Epub 2019 Apr 22.
3
Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry.
Lab Chip. 2008 Jul;8(7):1062-70. doi: 10.1039/b802931h. Epub 2008 Jun 5.
4
Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
Methods Mol Biol. 2016;1389:23-45. doi: 10.1007/978-1-4939-3302-0_3.
5
Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping.
Anal Chem. 2021 Mar 16;93(10):4567-4575. doi: 10.1021/acs.analchem.0c05009. Epub 2021 Mar 4.
6
Pinched-flow hydrodynamic stretching of single-cells.
Lab Chip. 2013 Sep 21;13(18):3728-34. doi: 10.1039/c3lc50649e.
7
2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
Cytometry A. 2015 Nov;87(11):1029-37. doi: 10.1002/cyto.a.22713. Epub 2015 Jun 26.
8
Hydrodynamic stretching of single cells for large population mechanical phenotyping.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7630-5. doi: 10.1073/pnas.1200107109. Epub 2012 Apr 30.
9
Portable in situ fluorescence cytometry of microscale cell-based assays.
Opt Lett. 2005 Jul 1;30(13):1689-91. doi: 10.1364/ol.30.001689.
10
Microscope-based label-free microfluidic cytometry.
Opt Express. 2011 Jan 3;19(1):387-98. doi: 10.1364/OE.19.000387.

引用本文的文献

1
Stimulated Brillouin scattering flow cytometry.
Biomed Opt Express. 2024 Sep 25;15(10):6024-6035. doi: 10.1364/BOE.537602. eCollection 2024 Oct 1.
2
Brillouin microscopy.
Nat Rev Methods Primers. 2024;4. doi: 10.1038/s43586-023-00286-z. Epub 2024 Feb 1.
3
Exploiting Matrix Stiffness to Overcome Drug Resistance.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):4682-4700. doi: 10.1021/acsbiomaterials.4c00445. Epub 2024 Jul 5.
6
A Novel Role of Connective Tissue Growth Factor in the Regulation of the Epithelial Phenotype.
Cancers (Basel). 2023 Oct 2;15(19):4834. doi: 10.3390/cancers15194834.
7
Rapid biomechanical imaging at low irradiation level via dual line-scanning Brillouin microscopy.
Nat Methods. 2023 May;20(5):677-681. doi: 10.1038/s41592-023-01816-z. Epub 2023 Mar 9.
9
Changes in intra-nuclear mechanics in response to DNA damaging agents revealed by time-domain Brillouin micro-spectroscopy.
Photoacoustics. 2022 Jul 11;27:100385. doi: 10.1016/j.pacs.2022.100385. eCollection 2022 Sep.
10
Multimodal microscale mechanical mapping of cancer cells in complex microenvironments.
Biophys J. 2022 Oct 4;121(19):3586-3599. doi: 10.1016/j.bpj.2022.09.002. Epub 2022 Sep 5.

本文引用的文献

1
Biomechanics of subcellular structures by non-invasive Brillouin microscopy.
Sci Rep. 2016 Nov 15;6:37217. doi: 10.1038/srep37217.
2
Physical role for the nucleus in cell migration.
J Phys Condens Matter. 2016 Sep 14;28(36):363002. doi: 10.1088/0953-8984/28/36/363002. Epub 2016 Jul 13.
4
Nuclear envelope rupture and repair during cancer cell migration.
Science. 2016 Apr 15;352(6283):353-8. doi: 10.1126/science.aad7297. Epub 2016 Mar 24.
5
High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis.
J Vis Exp. 2015 Dec 22(106):e53468. doi: 10.3791/53468.
6
Stimulated Brillouin Scattering Microscopic Imaging.
Sci Rep. 2015 Dec 22;5:18139. doi: 10.1038/srep18139.
7
Screening cell mechanotype by parallel microfiltration.
Sci Rep. 2015 Dec 2;5:17595. doi: 10.1038/srep17595.
8
Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy.
Nat Methods. 2015 Dec;12(12):1132-4. doi: 10.1038/nmeth.3616. Epub 2015 Oct 5.
9
Nuclear stiffening and chromatin softening with progerin expression leads to an attenuated nuclear response to force.
Soft Matter. 2015 Aug 28;11(32):6412-8. doi: 10.1039/c5sm00521c. Epub 2015 Jul 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验