Suppr超能文献

多模态微尺度分析癌症细胞在复杂微环境中的机械特性。

Multimodal microscale mechanical mapping of cancer cells in complex microenvironments.

机构信息

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Maryland Biophysics Program, IPST, University of Maryland, College Park, Maryland.

Maryland Biophysics Program, IPST, University of Maryland, College Park, Maryland; Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.

出版信息

Biophys J. 2022 Oct 4;121(19):3586-3599. doi: 10.1016/j.bpj.2022.09.002. Epub 2022 Sep 5.

Abstract

The mechanical phenotype of the cell is critical for survival following deformations due to confinement and fluid flow. One idea is that cancer cells are plastic and adopt different mechanical phenotypes under different geometries that aid in their survival. Thus, an attractive goal is to disrupt cancer cells' ability to adopt multiple mechanical states. To begin to address this question, we aimed to quantify the diversity of these mechanical states using in vitro biomimetics to mimic in vivo two-dimensional (2D) and 3D extracellular matrix environments. Here, we used two modalities Brillouin microscopy (∼GHz) and broadband frequency (7-15 kHz) optical tweezer microrheology to measure microscale cell mechanics. We measured the response of intracellular mechanics of cancer cells cultured in 2D and 3D environments where we modified substrate stiffness, dimensionality (2D versus 3D), and presence of fibrillar topography. We determined that there was good agreement between two modalities despite the difference in timescale of the two measurements. These findings on cell mechanical phenotype in different environments confirm a correlation between modalities that employ different mechanisms at different temporal scales (Hz-kHz versus GHz). We also determined that observed heterogeneity in cell shape is more closely linked to the cells' mechanical state. Moreover, individual cells in multicellular spheroids exhibit a lower degree of mechanical heterogeneity when compared with single cells cultured in monodisperse 3D cultures. The observed decreased heterogeneity among cells in spheroids suggested that there is mechanical cooperativity between cells that make up a single spheroid.

摘要

细胞的力学表型对于其在受到限制和流体流动而变形后的存活至关重要。有一种观点认为,癌细胞具有可塑性,并且在不同的几何形状下会采用不同的力学表型,以帮助它们存活。因此,一个有吸引力的目标是破坏癌细胞采用多种力学状态的能力。为了开始解决这个问题,我们旨在使用体外仿生学来量化这些力学状态的多样性,以模拟体内二维(2D)和三维(3D)细胞外基质环境。在这里,我们使用两种模式布里渊显微镜(约 1GHz)和宽带频率(7-15kHz)光镊微流变学来测量微尺度细胞力学。我们测量了在改变基底刚度、维度(2D 与 3D)和纤维状形貌存在的情况下,在 2D 和 3D 环境中培养的癌细胞的细胞内力学响应。我们发现,尽管两种测量的时间尺度不同,但两种模式之间存在很好的一致性。这些关于不同环境中细胞力学表型的发现证实了采用不同机制在不同时间尺度(Hz-kHz 与 GHz)的模式之间存在相关性。我们还确定,细胞形状的观察到的异质性与细胞的机械状态更密切相关。此外,与在单分散 3D 培养物中培养的单细胞相比,多细胞球体中的单个细胞表现出较低程度的机械异质性。在球体中观察到的细胞间异质性降低表明,构成单个球体的细胞之间存在机械协同作用。

相似文献

引用本文的文献

6
Stimulated Brillouin scattering flow cytometry.受激布里渊散射流式细胞术
Biomed Opt Express. 2024 Sep 25;15(10):6024-6035. doi: 10.1364/BOE.537602. eCollection 2024 Oct 1.
7
Brillouin microscopy.布里渊显微镜术
Nat Rev Methods Primers. 2024;4. doi: 10.1038/s43586-023-00286-z. Epub 2024 Feb 1.
8
The extracellular matrix mechanics in the vasculature.血管细胞外基质力学。
Nat Cardiovasc Res. 2023 Aug;2(8):718-732. doi: 10.1038/s44161-023-00311-0. Epub 2023 Aug 10.
10
Vascular regulation of disseminated tumor cells during metastatic spread.转移扩散过程中肿瘤细胞播散的血管调节
Biophys Rev (Melville). 2023 Mar 23;4(1):011310. doi: 10.1063/5.0106675. eCollection 2023 Mar.

本文引用的文献

2
Tumor cell nuclei soften during transendothelial migration.肿瘤细胞核在跨内皮迁移过程中会变软。
J Biomech. 2021 May 24;121:110400. doi: 10.1016/j.jbiomech.2021.110400. Epub 2021 Apr 5.
3
Mechanical Adaptability of Tumor Cells in Metastasis.肿瘤细胞在转移中的机械适应性。
Dev Cell. 2021 Jan 25;56(2):164-179. doi: 10.1016/j.devcel.2020.10.011. Epub 2020 Nov 24.
7
Human organoids: model systems for human biology and medicine.人类类器官:人类生物学和医学的模型系统。
Nat Rev Mol Cell Biol. 2020 Oct;21(10):571-584. doi: 10.1038/s41580-020-0259-3. Epub 2020 Jul 7.
10
Single-cell morphology encodes metastatic potential.单细胞形态可编码转移潜能。
Sci Adv. 2020 Jan 22;6(4):eaaw6938. doi: 10.1126/sciadv.aaw6938. eCollection 2020 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验