Ying Gui-Shuang, Maguire Maureen G, Glynn Robert, Rosner Bernard
a Center for Preventive Ophthalmology and Biostatistics, Department of Ophthalmology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA.
b Division of Preventive Medicine and the Channing Lab, Department of Medicine , Brigham and Women's Hospital , Boston , MA , USA.
Ophthalmic Epidemiol. 2017 Apr;24(2):130-140. doi: 10.1080/09286586.2016.1259636. Epub 2017 Jan 19.
To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data.
We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly.
When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models.
In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.
描述并演示用于分析相关连续眼部数据的适当线性回归方法。
我们描述了几种涉及双眼的回归分析方法,包括在各种协方差结构下的混合效应模型和边际模型,以考虑双眼之间的相关性。我们使用SAS统计软件演示了在一项比较一只患有脉络膜新生血管(CNV)的眼睛与未受影响的对侧眼睛之间基线屈光不正的研究中的应用,以及在一项确定老年人视野相关因素的研究中的应用。
当使用标准线性回归分析双眼的屈光不正而不考虑双眼之间的相关性(对人口统计学和眼部协变量进行调整)时,患有CNV的眼睛与对侧眼睛之间的差异为0.15屈光度(D;95%置信区间,CI -0.03至0.32D,p = 0.10)。使用混合效应模型或边际模型时,估计差异相同,但95%CI更窄(0.01至0.28D,p = 0.03)。对双眼视野数据进行标准回归会提供有偏差的标准误差估计(通常被低估)和较小的p值,而仅分析较差的眼睛会提供比混合效应模型和边际模型更大的p值。
在涉及双眼的研究中,忽略双眼之间的相关性可能导致无效推断。仅使用右眼或左眼进行分析是有效的,但会降低检验效能。分析较差的眼睛会提供较低的检验效能和有偏差的效应估计。应使用以眼睛为分析单位的混合效应或边际模型来适当考虑双眼之间的相关性,并最大化检验效能和精度。