Suppr超能文献

生物统计学教程:相关二元眼部数据的统计分析

Tutorial on Biostatistics: Statistical Analysis for Correlated Binary Eye Data.

作者信息

Ying Gui-Shuang, Maguire Maureen G, Glynn Robert, Rosner Bernard

机构信息

a Center for Preventive Ophthalmology and Biostatistics, Department of Ophthalmology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA.

b Division of Preventive Medicine and the Channing Lab, Department of Medicine , Brigham and Women's Hospital , Boston , MA , USA.

出版信息

Ophthalmic Epidemiol. 2018 Feb;25(1):1-12. doi: 10.1080/09286586.2017.1320413. Epub 2017 May 22.

Abstract

PURPOSE

To describe and demonstrate methods for analyzing correlated binary eye data.

METHODS

We describe non-model based (McNemar's test, Cochran-Mantel-Haenszel test) and model-based methods (generalized linear mixed effects model, marginal model) for analyses involving both eyes. These methods were applied to: (1) CAPT (Complications of Age-related Macular Degeneration Prevention Trial) where one eye was treated and the other observed (paired design); (2) ETROP (Early Treatment for Retinopathy of Prematurity) where bilaterally affected infants had one eye treated conventionally and the other treated early and unilaterally affected infants had treatment assigned randomly; and (3) AREDS (Age-Related Eye Disease Study) where treatment was systemic and outcome was eye-specific (both eyes in the same treatment group).

RESULTS

In the CAPT (n = 80), treatment group (30% vision loss in treated vs. 44% in observed eyes) was not statistically significant (p = 0.07) when inter-eye correlation was ignored, but was significant (p = 0.01) with McNemar's test and the marginal model. Using standard logistic regression for unfavorable vision in ETROP, standard errors and p-values were larger for person-level covariates and were smaller for ocular covariates than using models accounting for inter-eye correlation. For risk factors of geographic atrophy in AREDS, two-eye analyses accounting for inter-eye correlation yielded more power than one-eye analyses and provided larger standard errors and p-values than invalid two-eye analyses ignoring inter-eye correlation.

CONCLUSION

Ignoring inter-eye correlation can lead to larger p-values for paired designs and smaller p-values when both eyes are in the same group. Marginal models or mixed effects models using the eye as the unit of analysis provide valid inference.

摘要

目的

描述并演示分析相关双眼数据的方法。

方法

我们描述了用于双眼分析的非基于模型的方法(麦克内马尔检验、 Cochr an - Mantel - Haenszel检验)和基于模型的方法(广义线性混合效应模型、边际模型)。这些方法应用于:(1)年龄相关性黄斑变性预防试验(CAPT),其中一只眼睛接受治疗而另一只眼睛进行观察(配对设计);(2)早产儿视网膜病变早期治疗试验(ETROP),双侧患病婴儿一只眼睛接受传统治疗而另一只眼睛早期治疗,单侧患病婴儿则随机分配治疗;以及(3)年龄相关性眼病研究(AREDS),其中治疗是全身性的且结果是特定于眼睛的(同一治疗组中的双眼)。

结果

在CAPT(n = 80)中,当忽略眼间相关性时,治疗组(治疗眼视力丧失30%,观察眼为44%)无统计学显著性(p = 0.07),但使用麦克内马尔检验和边际模型时具有显著性(p = 0.01)。在ETROP中,对于视力不佳情况使用标准逻辑回归,与考虑眼间相关性的模型相比,个体水平协变量的标准误和p值更大,而眼部协变量的标准误和p值更小。对于AREDS中地理萎缩的危险因素,考虑眼间相关性的双眼分析比单眼分析具有更大的检验效能,并且与忽略眼间相关性的无效双眼分析相比,提供更大的标准误和p值。

结论

忽略眼间相关性会导致配对设计的p值更大,而当双眼在同一组时p值更小。以眼为分析单位的边际模型或混合效应模型可提供有效的推断。

相似文献

1
Tutorial on Biostatistics: Statistical Analysis for Correlated Binary Eye Data.生物统计学教程:相关二元眼部数据的统计分析
Ophthalmic Epidemiol. 2018 Feb;25(1):1-12. doi: 10.1080/09286586.2017.1320413. Epub 2017 May 22.
8
On the analysis of composite measures of quality in medical research.医学研究中质量综合指标的分析
Stat Methods Med Res. 2017 Apr;26(2):633-660. doi: 10.1177/0962280214553330. Epub 2014 Oct 8.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验