Suppr超能文献

小样本量时连续相关眼部数据的分析方法评估

Evaluation of Approaches to Analyzing Continuous Correlated Eye Data When Sample Size Is Small.

作者信息

Huang Jing, Huang Jiayan, Chen Yong, Ying Gui-Shuang

机构信息

a Division of Biostatistics , Center for Clinical Epidemiology and Biostatistics.

b Center for Preventive Ophthalmology and Biostatistics, Department of Ophthalmology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania , USA.

出版信息

Ophthalmic Epidemiol. 2018 Feb;25(1):45-54. doi: 10.1080/09286586.2017.1339809. Epub 2017 Sep 11.

Abstract

PURPOSE

To evaluate the performance of commonly used statistical methods for analyzing continuous correlated eye data when sample size is small.

METHODS

We simulated correlated continuous data from two designs: (1) two eyes of a subject in two comparison groups; (2) two eyes of a subject in the same comparison group, under various sample size (5-50), inter-eye correlation (0-0.75) and effect size (0-0.8). Simulated data were analyzed using paired t-test, two sample t-test, Wald test and score test using the generalized estimating equations (GEE) and F-test using linear mixed effects model (LMM). We compared type I error rates and statistical powers, and demonstrated analysis approaches through analyzing two real datasets.

RESULTS

In design 1, paired t-test and LMM perform better than GEE, with nominal type 1 error rate and higher statistical power. In design 2, no test performs uniformly well: two sample t-test (average of two eyes or a random eye) achieves better control of type I error but yields lower statistical power. In both designs, the GEE Wald test inflates type I error rate and GEE score test has lower power.

CONCLUSION

When sample size is small, some commonly used statistical methods do not perform well. Paired t-test and LMM perform best when two eyes of a subject are in two different comparison groups, and t-test using the average of two eyes performs best when the two eyes are in the same comparison group. When selecting the appropriate analysis approach the study design should be considered.

摘要

目的

评估样本量较小时分析连续相关眼部数据的常用统计方法的性能。

方法

我们从两种设计中模拟相关连续数据:(1)两个比较组中受试者的双眼;(2)同一比较组中受试者的双眼,设置不同的样本量(5 - 50)、眼间相关性(0 - 0.75)和效应量(0 - 0.8)。使用配对t检验、两样本t检验、 Wald检验以及使用广义估计方程(GEE)的得分检验和使用线性混合效应模型(LMM)的F检验对模拟数据进行分析。我们比较了I型错误率和统计效能,并通过分析两个真实数据集展示了分析方法。

结果

在设计1中,配对t检验和LMM的表现优于GEE,具有名义I型错误率和更高的统计效能。在设计2中,没有一种检验在所有情况下都表现良好:两样本t检验(双眼平均值或随机一只眼)能更好地控制I型错误,但统计效能较低。在两种设计中,GEE Wald检验会使I型错误率膨胀,GEE得分检验的效能较低。

结论

当样本量较小时,一些常用的统计方法表现不佳。当受试者的双眼处于两个不同的比较组时,配对t检验和LMM表现最佳;当双眼处于同一比较组时,使用双眼平均值的t检验表现最佳。选择合适的分析方法时应考虑研究设计。

相似文献

6
Tutorial on Biostatistics: Statistical Analysis for Correlated Binary Eye Data.生物统计学教程:相关二元眼部数据的统计分析
Ophthalmic Epidemiol. 2018 Feb;25(1):1-12. doi: 10.1080/09286586.2017.1320413. Epub 2017 May 22.

引用本文的文献

7
Tensile properties of glaucomatous human sclera, optic nerve, and optic nerve sheath.青光眼患者巩膜、视神经和视神经鞘的拉伸性能。
Biomech Model Mechanobiol. 2024 Dec;23(6):1851-1862. doi: 10.1007/s10237-024-01872-0. Epub 2024 Aug 8.
10
Ocular pulse amplitude (OPA) in canine -open-angle glaucoma (-OAG).犬开角型青光眼(-OAG)中的眼脉冲幅度(OPA)。
Front Bioeng Biotechnol. 2023 Dec 7;11:1242166. doi: 10.3389/fbioe.2023.1242166. eCollection 2023.

本文引用的文献

5
Regression methods when the eye is the unit of analysis.以眼睛作为分析单位时的回归方法。
Ophthalmic Epidemiol. 2012 Jun;19(3):159-65. doi: 10.3109/09286586.2012.674614.
6
Statistical guidelines for clinical studies of human vision.临床人类视觉研究的统计学指南。
Ophthalmic Physiol Opt. 2011 Mar;31(2):123-36. doi: 10.1111/j.1475-1313.2010.00815.x.
7
A study of clustered data and approaches to its analysis.群组数据研究及其分析方法。
J Neurosci. 2010 Aug 11;30(32):10601-8. doi: 10.1523/JNEUROSCI.0362-10.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验