Center for Preventive Ophthalmology and Biostatistics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA.
Division of Preventive Medicine and the Channing Lab, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts, USA.
Ophthalmic Epidemiol. 2021 Feb;28(1):3-20. doi: 10.1080/09286586.2020.1786590. Epub 2020 Aug 2.
To describe and demonstrate methods for analyzing longitudinal correlated eye data with a continuous outcome measure.
We described fixed effects, mixed effects and generalized estimating equations (GEE) models, applied them to data from the Complications of Age-Related Macular Degeneration Prevention Trial (CAPT) and the Age-Related Eye Disease Study (AREDS). In CAPT (N = 1052), we assessed the effect of eye-specific laser treatment on change in visual acuity (VA). In the AREDS study, we evaluated effects of systemic supplement treatment among 1463 participants with AMD category 3.
In CAPT, the inter-eye correlations (0.33 to 0.53) and longitudinal correlations (0.31 to 0.88) varied. There was a small treatment effect on VA change (approximately one letter) at 24 months for all three models ( = .009 to 0.02). Model fit was better with the mixed effects model than the fixed effects model ( < .001). In AREDS, there was no significant treatment effect in all models ( > .55). Current smokers had a significantly greater VA decline than non-current smokers in the fixed effects model ( = .04) and the mixed effects model with random intercept ( = .0003), but marginally significant in the mixed effects model with random intercept and slope ( = .08), and GEE models ( = .054 to 0.07). The model fit was better with the fixed effects model than the mixed effects model ( < .0001).
Longitudinal models using the eye as the unit of analysis can be implemented using available statistical software to account for both inter-eye and longitudinal correlations. Goodness-of-fit statistics may guide the selection of the most appropriate model.
描述和展示使用连续结果测量分析纵向相关眼部数据的方法。
我们描述了固定效应、混合效应和广义估计方程(GEE)模型,并将其应用于年龄相关性黄斑变性预防试验(CAPT)和年龄相关性眼病研究(AREDS)的数据中。在 CAPT(N=1052)中,我们评估了眼部特异性激光治疗对视力变化(VA)的影响。在 AREDS 研究中,我们评估了 1463 名 AMD 3 类患者系统补充治疗的效果。
在 CAPT 中,眼间相关性(0.33 至 0.53)和纵向相关性(0.31 至 0.88)各不相同。所有三种模型(=0.009 至 0.02)在 24 个月时对 VA 变化的治疗效果较小(约一个字母)。混合效应模型比固定效应模型的模型拟合更好(<0.001)。在 AREDS 中,所有模型均无显著治疗效果(>0.55)。在固定效应模型(=0.04)和具有随机截距的混合效应模型(=0.0003)中,当前吸烟者的 VA 下降明显大于非当前吸烟者,但在具有随机截距和斜率的混合效应模型(=0.08)和 GEE 模型(=0.054 至 0.07)中,边际显著。固定效应模型的模型拟合优于混合效应模型(<0.0001)。
使用眼睛作为分析单位的纵向模型可以使用现有统计软件来实现,以同时考虑眼间和纵向相关性。拟合优度统计数据可能有助于选择最合适的模型。