Hannink Julius, Kautz Thomas, Pasluosta Cristian F, Gasmann Karl-Gunter, Klucken Jochen, Eskofier Bjoern M
IEEE J Biomed Health Inform. 2017 Jan;21(1):85-93. doi: 10.1109/JBHI.2016.2636456. Epub 2016 Dec 8.
Measurement of stride-related, biomechanical parameters is the common rationale for objective gait impairment scoring. State-of-the-art double-integration approaches to extract these parameters from inertial sensor data are, however, limited in their clinical applicability due to the underlying assumptions. To overcome this, we present a method to translate the abstract information provided by wearable sensors to context-related expert features based on deep convolutional neural networks. Regarding mobile gait analysis, this enables integration-free and data-driven extraction of a set of eight spatio-temporal stride parameters. To this end, two modeling approaches are compared: a combined network estimating all parameters of interest and an ensemble approach that spawns less complex networks for each parameter individually. The ensemble approach is outperforming the combined modeling in the current application. On a clinically relevant and publicly available benchmark dataset, we estimate stride length, width and medio-lateral change in foot angle up to -0.15 ± 6.09 cm, -0.09 ± 4.22 cm and 0.13 ± 3.78° respectively. Stride, swing and stance time as well as heel and toe contact times are estimated up to ±0.07, ±0.05, ±0.07, ±0.07 and ±0.12 s respectively. This is comparable to and in parts outperforming or defining state of the art. Our results further indicate that the proposed change in the methodology could substitute assumption-driven double-integration methods and enable mobile assessment of spatio-temporal stride parameters in clinically critical situations as, e.g., in the case of spastic gait impairments.
测量与步幅相关的生物力学参数是客观步态损伤评分的常见依据。然而,由于存在潜在假设,从惯性传感器数据中提取这些参数的先进双积分方法在临床应用中受到限制。为克服这一问题,我们提出了一种基于深度卷积神经网络将可穿戴传感器提供的抽象信息转换为与上下文相关的专家特征的方法。对于移动步态分析,这能够实现无积分且数据驱动的一组八个时空步幅参数的提取。为此,比较了两种建模方法:一种联合网络估计所有感兴趣的参数,另一种集成方法为每个参数单独生成不太复杂的网络。在当前应用中,集成方法的性能优于联合建模。在一个具有临床相关性且公开可用的基准数据集上,我们分别估计步幅长度、宽度和足部角度的中外侧变化可达-0.15±6.09厘米、-0.09±4.22厘米和0.13±3.78°。步幅、摆动和站立时间以及脚跟和脚趾接触时间的估计误差分别可达±0.07、±0.05、±0.07、±0.07和±0.12秒。这与现有技术相当,部分性能优于或定义了现有技术水平。我们的结果进一步表明,所提出的方法变革可以替代基于假设的双积分方法,并能够在临床关键情况下,例如在痉挛性步态损伤的情况下,对时空步幅参数进行移动评估。