Jerković Ivana, Ibrahim Daniel M, Andrey Guillaume, Haas Stefan, Hansen Peter, Janetzki Catrin, González Navarrete Irene, Robinson Peter N, Hecht Jochen, Mundlos Stefan
Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany.
Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
PLoS Genet. 2017 Jan 19;13(1):e1006567. doi: 10.1371/journal.pgen.1006567. eCollection 2017 Jan.
Homeotic genes code for key transcription factors (HOX-TFs) that pattern the animal body plan. During embryonic development, Hox genes are expressed in overlapping patterns and function in a partially redundant manner. In vitro biochemical screens probing the HOX-TF sequence specificity revealed largely overlapping sequence preferences, indicating that co-factors might modulate the biological function of HOX-TFs. However, due to their overlapping expression pattern, high protein homology, and insufficiently specific antibodies, little is known about their genome-wide binding preferences. In order to overcome this problem, we virally expressed tagged versions of limb-expressed posterior HOX genes (HOXA9-13, and HOXD9-13) in primary chicken mesenchymal limb progenitor cells (micromass). We determined the effect of each HOX-TF on cellular differentiation (chondrogenesis) and gene expression and found that groups of HOX-TFs induce distinct regulatory programs. We used ChIP-seq to determine their individual genome-wide binding profiles and identified between 12,721 and 28,572 binding sites for each of the nine HOX-TFs. Principal Component Analysis (PCA) of binding profiles revealed that the HOX-TFs are clustered in two subgroups (Group 1: HOXA/D9, HOXA/D10, HOXD12, and HOXA13 and Group 2: HOXA/D11 and HOXD13), which are characterized by differences in their sequence specificity and by the presence of cofactor motifs. Specifically, we identified CTCF binding sites in Group 1, indicating that this subgroup of HOX-proteins cooperates with CTCF. We confirmed this interaction by an independent biological assay (Proximity Ligation Assay) and demonstrated that CTCF is a novel HOX cofactor that specifically associates with Group 1 HOX-TFs, pointing towards a possible interplay between HOX-TFs and chromatin architecture.
同源异型基因编码关键转录因子(HOX-TF),这些转录因子决定动物的身体结构模式。在胚胎发育过程中,Hox基因以重叠模式表达,并以部分冗余的方式发挥作用。体外生化筛选探究HOX-TF序列特异性,结果显示序列偏好性大多重叠,这表明辅助因子可能会调节HOX-TF的生物学功能。然而,由于它们的表达模式重叠、蛋白质同源性高以及抗体特异性不足,人们对它们在全基因组范围内的结合偏好了解甚少。为了克服这个问题,我们在原代鸡肢体间充质祖细胞(微团)中病毒表达肢体表达的后HOX基因(HOXA9-13和HOXD9-13)的标签版本。我们确定了每个HOX-TF对细胞分化(软骨形成)和基因表达的影响,发现HOX-TF组诱导不同的调控程序。我们使用染色质免疫沉淀测序(ChIP-seq)来确定它们各自在全基因组范围内的结合图谱,并为九个HOX-TF中的每一个鉴定出12,721至28,572个结合位点。结合图谱的主成分分析(PCA)显示,HOX-TF聚集在两个亚组中(第1组:HOXA/D9、HOXA/D10、HOXD12和HOXA13;第2组:HOXA/D11和HOXD13),这两个亚组的特征在于它们的序列特异性和辅助因子基序存在差异。具体而言,我们在第1组中鉴定出CTCF结合位点,这表明该组HOX蛋白与CTCF合作。我们通过独立的生物学检测(邻近连接检测)证实了这种相互作用,并证明CTCF是一种新型的HOX辅助因子,它与第1组HOX-TF特异性结合,这表明HOX-TF与染色质结构之间可能存在相互作用。