School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
Nat Commun. 2021 Aug 18;12(1):5013. doi: 10.1038/s41467-021-25330-y.
Human families with chromosomal rearrangements at 2q31, where the human HOXD locus maps, display mesomelic dysplasia, a severe shortening and bending of the limb. In mice, the dominant Ulnaless inversion of the HoxD cluster produces a similar phenotype suggesting the same origin for these malformations in humans and mice. Here we engineer 1 Mb inversion including the HoxD gene cluster, which positioned Hoxd13 close to proximal limb enhancers. Using this model, we show that these enhancers contact and activate Hoxd13 in proximal cells, inducing the formation of mesomelic dysplasia. We show that a secondary Hoxd13 null mutation in-cis with the inversion completely rescues the alterations, demonstrating that ectopic HOXD13 is directly responsible for this bone anomaly. Single-cell expression analysis and evaluation of HOXD13 binding sites suggests that the phenotype arises primarily by acting through genes normally controlled by HOXD13 in distal limb cells. Altogether, these results provide a conceptual and mechanistic framework to understand and unify the molecular origins of human mesomelic dysplasia associated with 2q31.
在人类染色体 2q31 区域发生重排的家庭中,人类 HOXD 基因座定位于此,这些家庭表现出中胚层骨发育不良,这是一种严重的肢体缩短和弯曲的疾病。在小鼠中,HoxD 簇的显性桡骨缺失倒位产生了类似的表型,这表明人类和小鼠的这些畸形具有相同的起源。在这里,我们构建了一个包含 HoxD 基因簇的 1Mb 倒位,使 Hoxd13 靠近近端肢体增强子。使用该模型,我们证明这些增强子在近端细胞中接触并激活 Hoxd13,诱导中胚层骨发育不良的形成。我们发现倒位内的 Hoxd13 次要缺失突变完全挽救了这些改变,表明异位 HOXD13 直接导致了这种骨骼异常。单细胞表达分析和 HOXD13 结合位点的评估表明,该表型主要是通过在远端肢体细胞中通常受 HOXD13 控制的基因发挥作用而产生的。总之,这些结果提供了一个概念和机制框架,以理解和统一与 2q31 相关的人类中胚层骨发育不良的分子起源。