Photon Science, Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, D-22607 Hamburg, Germany.
Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany.
ACS Appl Mater Interfaces. 2017 Feb 15;9(6):5629-5637. doi: 10.1021/acsami.6b15172. Epub 2017 Feb 6.
The reproducible low-cost fabrication of functional polymer-metal interfaces via self-assembly is of crucial importance in organic electronics and organic photovoltaics. In particular, submonolayer and nanogranular systems expose highly interesting electrical, plasmonic, and catalytic properties. The exploitation of their great potential requires tailoring of the structure on the nanometer scale and below. To obtain full control over the complex nanostructural evolution at the polymer-metal interface, we monitor the evolution of the metallic layer morphology with in situ time-resolved grazing-incidence small-angle X-ray scattering during sputter deposition. We identify the impact of different deposition rates on the growth regimes: the deposition rate affects primarily the nucleation process and the adsorption-mediated growth, whereas rather small effects on diffusion-mediated growth processes are observed. Only at higher rates are initial particle densities higher due to an increasing influence of random nucleation, and an earlier onset of thin film percolation occurs. The obtained results are discussed to identify optimized morphological parameters of the gold cluster ensemble relevant for various applications as a function of the effective layer thickness and deposition rate. Our study opens up new opportunities to improve the fabrication of tailored metal-polymer nanostructures for plasmonic-enhanced applications such as organic photovoltaics and sensors.
通过自组装实现功能聚合物-金属界面的可重复、低成本制造,对于有机电子学和有机光伏来说至关重要。特别是亚单层和纳米颗粒体系表现出了非常有趣的电学、等离子体和催化性质。要充分发挥它们的巨大潜力,就需要对纳米尺度及以下的结构进行定制。为了获得对聚合物-金属界面复杂的纳米结构演化的全面控制,我们在溅射沉积过程中使用原位时间分辨掠入射小角 X 射线散射监测金属层形貌的演化。我们确定了不同沉积速率对生长区的影响:沉积速率主要影响形核过程和吸附介导的生长,而对扩散介导的生长过程的影响则较小。只有在较高的速率下,由于随机形核的影响增加,初始颗粒密度才会更高,并且薄膜渗流的起始时间更早。我们讨论了获得的结果,以确定与各种应用相关的、作为有效层厚度和沉积速率函数的金纳米团簇集合体的优化形态参数。我们的研究为等离子体增强应用(如有机光伏和传感器)中定制金属-聚合物纳米结构的制造提供了新的机会。