Suppr超能文献

基于原子轨道的带有张量超收缩的SOS-MP2。II. 局部张量超收缩。

Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction.

作者信息

Song Chenchen, Martínez Todd J

机构信息

Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

出版信息

J Chem Phys. 2017 Jan 21;146(3):034104. doi: 10.1063/1.4973840.

Abstract

In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

摘要

在本系列的第一篇论文[论文I,C.宋和T.J.马丁内斯,《化学物理杂志》144, 174111 (2016)]中,我们展示了如何通过利用原子轨道中的稀疏性并使用图形处理单元(GPU)来加速张量超收缩(THC)的SOS-MP2方法。这将SOS-MP2能量计算的形式缩放比例相对于系统大小降低到了立方级。计算瓶颈随后变成了THC度量矩阵求逆,其按立方比例缩放且前置因子很大。在这项工作中,提出了局部THC近似,以将THC度量矩阵求逆的计算成本降低到相对于分子大小的线性缩放比例。通过这样做,我们消除了在具有O(1000)个原子的大分子上进行THC-SOS-MP2计算的主要瓶颈。对于具有多达200个原子和3300个基函数的分子,局部THC近似引入的误差小于0.6 kcal/mol。结合先前工作中引入的图形处理单元技术和利用局部性的方法,在实际中,缩放后的反对称自旋MP2 (SOS-MP2)计算在高达10000个基函数时呈现O(N)缩放比例。新算法使得在不到一天的时间内在单个节点上对诸如泛素(具有1231个原子/10294个原子基函数)这样的小蛋白质进行SOS-MP2计算成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验