Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
Curr Biol. 2017 Feb 6;27(3):415-422. doi: 10.1016/j.cub.2016.12.010. Epub 2017 Jan 19.
The recruitment of motoneurons during force generation follows a general pattern that has been confirmed across diverse species [1-3]. Motoneurons are recruited systematically according to synaptic inputs and intrinsic cellular properties and corresponding to movements of different intensities. However, much less is known about the output properties of individual motoneurons and how they affect the translation of motoneuron recruitment to the strength of muscle contractions. In larval zebrafish, spinal motoneurons are recruited in a topographic gradient according to their input resistance (Rin) at different swimming strengths and speeds. Whereas dorsal, lower-Rin primary motoneurons (PMns) are only activated during behaviors that involve strong and fast body bends, more ventral, higher-Rin secondary motoneurons (SMns) are recruited during weaker and slower movements [4-6]. Here we perform in vivo paired recordings between identified spinal motoneurons and skeletal muscle cells in larval zebrafish. We characterize individual motoneuron outputs to single muscle cells and show that the strength and reliability of motoneuron outputs are inversely correlated with motoneuron Rin. During repetitive high-frequency motoneuron drive, PMn synapses undergo depression, whereas SMn synapses potentiate. We monitor muscle cell contractions elicited by single motoneurons and show that the pattern of motoneuron output strength and plasticity observed in electrophysiological recordings is reflected in muscle shortening. Our findings indicate a link between the recruitment pattern and output properties of spinal motoneurons that can together generate appropriate intensities for muscle contractions. We demonstrate that motoneuron output properties provide an additional peripheral mechanism for graded locomotor control at the neuromuscular junction.
在产生力的过程中,运动神经元的募集遵循一个普遍的模式,这一模式已经在不同物种中得到证实[1-3]。运动神经元根据突触输入和内在细胞特性进行系统募集,对应于不同强度的运动。然而,对于单个运动神经元的输出特性以及它们如何影响运动神经元募集到肌肉收缩强度的转化,我们知之甚少。在幼年斑马鱼中,脊髓运动神经元根据其在不同游泳强度和速度下的输入电阻(Rin)按地形梯度募集。而背侧、低 Rin 的初级运动神经元(PMns)仅在涉及强而快的身体弯曲的行为中被激活,而更腹侧、高 Rin 的次级运动神经元(SMns)则在较弱和较慢的运动中被募集[4-6]。在这里,我们在幼年斑马鱼中对已鉴定的脊髓运动神经元和骨骼肌细胞进行了体内配对记录。我们描述了单个运动神经元对单个肌肉细胞的输出,并表明运动神经元输出的强度和可靠性与运动神经元 Rin 成反比。在重复的高频运动神经元驱动下,PMn 突触发生抑制,而 SMn 突触增强。我们监测由单个运动神经元引起的肌肉细胞收缩,并表明在电生理记录中观察到的运动神经元输出强度和可塑性模式反映在肌肉缩短中。我们的发现表明,脊髓运动神经元的募集模式和输出特性之间存在联系,这些特性可以共同产生适合肌肉收缩的强度。我们证明,运动神经元输出特性为神经肌肉接头的分级运动控制提供了一种额外的外围机制。