Suppr超能文献

斑马鱼神经肌肉接头:神经的力量

Zebrafish neuromuscular junction: The power of N.

作者信息

Brehm Paul, Wen Hua

机构信息

Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.

Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.

出版信息

Neurosci Lett. 2019 Nov 20;713:134503. doi: 10.1016/j.neulet.2019.134503. Epub 2019 Sep 23.

Abstract

In the early 1950s, Katz and his colleagues capitalized on the newly developed intracellular microelectrode recording technique to investigate synaptic transmission. For study they chose frog neuromuscular junction (NMJ), which was ideally suited due to the accessibility and large size of the muscle cells. Paradoxically, the large size precluded the use of next generation patch clamp technology. Consequently, electrophysiological study of synaptic function shifted to small central synapses made amenable by patch clamp. Recently, however, the unique features offered by zebrafish have rekindled interest in the NMJ as a model for electrophysiological study of synaptic transmission. The small muscle size and synaptic simplicity provide the singular opportunity to perform in vivo spinal motoneuron-target muscle patch clamp recordings. Additional incentive is provided by zebrafish lines harboring mutations in key synaptic proteins, many of which are embryonic lethal in mammals, but all of which are able to survive well past synapse maturation in zebrafish. This mini-review will highlight features that set zebrafish NMJs apart from traditional NMJs. We also draw into focus findings that offer the promise of identifying features that define release sites, which serve to set the upper limit of transmitter release. Since its conception several candidates representing release sites have been proposed, most of which are based on distinctions among vesicle pools in their state of readiness for release. However, models based on distinctions among vesicles have become enormously complicated and none adequately account for setting an upper limit for exocytosis in response to an action potential (AP). Specifically, findings from zebrafish NMJ point to an alternative model, positing that elements other than vesicles per se set the upper limits of release.

摘要

20世纪50年代初,卡茨及其同事利用新开发的细胞内微电极记录技术来研究突触传递。为了进行研究,他们选择了青蛙神经肌肉接头(NMJ),由于肌肉细胞易于获取且体积较大,该接头非常适合研究。矛盾的是,其较大的尺寸使得无法使用下一代膜片钳技术。因此,突触功能的电生理研究转向了通过膜片钳变得易于研究的小型中枢突触。然而,最近,斑马鱼所具有的独特特征重新激发了人们对将NMJ作为突触传递电生理研究模型的兴趣。肌肉尺寸小和突触简单提供了在体内进行脊髓运动神经元-靶肌肉膜片钳记录的独特机会。携带关键突触蛋白突变的斑马鱼品系提供了额外的研究动力,其中许多突变在哺乳动物中是胚胎致死的,但在斑马鱼中所有这些突变体都能在突触成熟后很好地存活。这篇综述将重点介绍使斑马鱼NMJ有别于传统NMJ的特征。我们还将聚焦一些研究结果,这些结果有望识别出定义释放位点的特征,而释放位点决定了递质释放的上限。自从提出这个概念以来,已经提出了几种代表释放位点的候选模型,其中大多数是基于囊泡池在释放准备状态上的差异。然而,基于囊泡差异的模型变得极其复杂,没有一个模型能够充分解释如何设定动作电位(AP)引发的胞吐作用上限。具体而言,斑马鱼NMJ的研究结果指向了另一种模型,该模型认为除了囊泡本身之外的其他因素设定了释放的上限。

相似文献

1
Zebrafish neuromuscular junction: The power of N.
Neurosci Lett. 2019 Nov 20;713:134503. doi: 10.1016/j.neulet.2019.134503. Epub 2019 Sep 23.
2
Fatigue in Rapsyn-Deficient Zebrafish Reflects Defective Transmitter Release.
J Neurosci. 2016 Oct 19;36(42):10870-10882. doi: 10.1523/JNEUROSCI.0505-16.2016.
3
Ablation of All Synaptobrevin vSNAREs Blocks Evoked But Not Spontaneous Neurotransmitter Release at Neuromuscular Synapses.
J Neurosci. 2019 Jul 31;39(31):6049-6066. doi: 10.1523/JNEUROSCI.0403-19.2019. Epub 2019 Jun 3.
4
Transmitter release site organization can predict synaptic function at the neuromuscular junction.
J Neurophysiol. 2018 Apr 1;119(4):1340-1355. doi: 10.1152/jn.00168.2017. Epub 2017 Dec 27.
5
Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse.
Neuroscience. 2007 Aug 10;148(1):1-6. doi: 10.1016/j.neuroscience.2007.06.011. Epub 2007 Jul 20.
6
The synaptic bouton acts like a salt shaker.
Cell Biochem Biophys. 2004;41(2):259-64. doi: 10.1385/cbb:41:2:259.
7
Paired motor neuron-muscle recordings in zebrafish test the receptor blockade model for shaping synaptic current.
J Neurosci. 2005 Aug 31;25(35):8104-11. doi: 10.1523/JNEUROSCI.2611-05.2005.
8
Rab3A deletion selectively reduces spontaneous neurotransmitter release at the mouse neuromuscular synapse.
Brain Res. 2006 May 17;1089(1):126-34. doi: 10.1016/j.brainres.2006.03.055. Epub 2006 May 2.
9
The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction.
J Physiol. 2011 Apr 1;589(Pt 7):1603-18. doi: 10.1113/jphysiol.2010.201939. Epub 2011 Jan 31.

引用本文的文献

1
Neuropeptidergic regulation of neuromuscular signaling in larval zebrafish alters swimming behavior and synaptic transmission.
iScience. 2024 Aug 6;27(9):110687. doi: 10.1016/j.isci.2024.110687. eCollection 2024 Sep 20.
2
Embryonic ethanol exposure disrupts craniofacial neuromuscular integration in zebrafish larvae.
Front Physiol. 2023 Feb 7;14:1131075. doi: 10.3389/fphys.2023.1131075. eCollection 2023.
3
Recording Synaptic Transmission from Auditory Mixed Synapses on the Mauthner Cells of Developing Zebrafish.
eNeuro. 2022 Jun 21;9(3). doi: 10.1523/ENEURO.0021-22.2022. Print 2022 May-Jun.
4
Spontaneously Recycling Synaptic Vesicles Constitute Readily Releasable Vesicles in Intact Neuromuscular Synapses.
J Neurosci. 2022 Apr 27;42(17):3523-3536. doi: 10.1523/JNEUROSCI.2005-21.2022. Epub 2022 Mar 24.
5
Macros to Quantify Exosome Release and Autophagy at the Neuromuscular Junction of .
Front Cell Dev Biol. 2021 Nov 15;9:773861. doi: 10.3389/fcell.2021.773861. eCollection 2021.
6
Primary and secondary motoneurons use different calcium channel types to control escape and swimming behaviors in zebrafish.
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26429-26437. doi: 10.1073/pnas.2015866117. Epub 2020 Oct 5.

本文引用的文献

2
Presynaptic mechanisms controlling calcium-triggered transmitter release at the neuromuscular junction.
Curr Opin Physiol. 2018 Aug;4:15-24. doi: 10.1016/j.cophys.2018.03.004. Epub 2018 Mar 17.
4
Active zone structure-function relationships at the neuromuscular junction.
Synapse. 2018 Nov;72(11):e22057. doi: 10.1002/syn.22057. Epub 2018 Aug 29.
5
Synaptic weight set by Munc13-1 supramolecular assemblies.
Nat Neurosci. 2018 Jan;21(1):41-49. doi: 10.1038/s41593-017-0041-9. Epub 2017 Dec 11.
6
Transcellular Nanoalignment of Synaptic Function.
Neuron. 2017 Nov 1;96(3):680-696. doi: 10.1016/j.neuron.2017.10.006.
7
Quantal Fluctuations in Central Mammalian Synapses: Functional Role of Vesicular Docking Sites.
Physiol Rev. 2017 Oct 1;97(4):1403-1430. doi: 10.1152/physrev.00032.2016.
8
Input-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction.
Neuron. 2017 Mar 22;93(6):1388-1404.e10. doi: 10.1016/j.neuron.2017.02.028. Epub 2017 Mar 9.
9
Some Subtle Lessons from the Calyx of Held Synapse.
Biophys J. 2017 Jan 24;112(2):215-223. doi: 10.1016/j.bpj.2016.12.017.
10
A Gradient in Synaptic Strength and Plasticity among Motoneurons Provides a Peripheral Mechanism for Locomotor Control.
Curr Biol. 2017 Feb 6;27(3):415-422. doi: 10.1016/j.cub.2016.12.010. Epub 2017 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验