Suppr超能文献

通过保险理赔预测65岁及以上人群的跌倒情况。

Predicting Falls in People Aged 65 Years and Older from Insurance Claims.

作者信息

Homer Mark L, Palmer Nathan P, Fox Kathe P, Armstrong Joanne, Mandl Kenneth D

机构信息

Computational Health Informatics Program, Boston Children's Hospital, Boston, Mass; Department of Biomedical Informatics, Harvard Medical School, Boston, Mass.

Aetna, Inc, Hartford, Conn.

出版信息

Am J Med. 2017 Jun;130(6):744.e17-744.e23. doi: 10.1016/j.amjmed.2017.01.003. Epub 2017 Jan 20.

Abstract

BACKGROUND

Accidental falls among people aged 65 years and older caused approximately 2,700,000 injuries, 27,000 deaths, and cost more than 34 billion dollars in the US annually in recent years. Here, we derive and validate a predictive model for falls based on a retrospective cohort of those 65 years and older.

METHODS

Insurance claims from a 1-year observational period were used to predict a fall-related claim in the following 2 years. The predictive model takes into account a person's age, sex, prescriptions, and diagnoses. Through random assignment, half of the people had their claims used to derive the model, while the remaining people had their claims used to validate the model.

RESULTS

Of 120,881 individuals with Aetna health insurance coverage, 12,431 (10.3%) members fell. During validation, people were risk stratified across 20 levels, where those in the highest risk stratum had 10.5 times the risk as those in the lowest stratum (33.1% vs 3.1%).

CONCLUSIONS

Using only insurance claims, individuals in this large cohort at high risk of falls could be readily identified up to 2 years in advance. Although external validation is needed, the findings support the use of the model to better target interventions.

摘要

背景

近年来,在美国,65岁及以上人群的意外跌倒每年导致约270万例受伤、2.7万例死亡,花费超过340亿美元。在此,我们基于65岁及以上人群的回顾性队列推导并验证了一种跌倒预测模型。

方法

使用为期1年观察期的保险理赔数据来预测接下来2年中与跌倒相关的理赔。该预测模型考虑了一个人的年龄、性别、处方和诊断情况。通过随机分配,一半人的理赔数据用于推导模型,而其余人的理赔数据用于验证模型。

结果

在120,881名拥有安泰医疗保险的个体中,有12,431名(10.3%)成员跌倒。在验证过程中,将人群按风险分为20个等级,风险最高等级的人群跌倒风险是最低等级人群的10.5倍(33.1%对3.1%)。

结论

仅使用保险理赔数据,就能在长达2年的时间里提前轻松识别出这个大型队列中跌倒风险高的个体。尽管需要外部验证,但这些发现支持使用该模型来更好地确定干预目标。

相似文献

1
Predicting Falls in People Aged 65 Years and Older from Insurance Claims.通过保险理赔预测65岁及以上人群的跌倒情况。
Am J Med. 2017 Jun;130(6):744.e17-744.e23. doi: 10.1016/j.amjmed.2017.01.003. Epub 2017 Jan 20.
5
Australian insurance costs of jockeys injured in a race-day fall.澳大利亚赛马骑师比赛日坠马受伤的保险费用。
Occup Med (Lond). 2016 Apr;66(3):222-229. doi: 10.1093/occmed/kqv150. Epub 2015 Nov 13.

引用本文的文献

7
Determining the relative risk of hospitalisation and surgery of fall injury patients.确定跌倒受伤患者住院和手术的相对风险。
Health Syst (Basingstoke). 2021 Aug 17;11(4):288-302. doi: 10.1080/20476965.2021.1966323. eCollection 2022.

本文引用的文献

5
Machine Learning and the Profession of Medicine.机器学习与医学职业。
JAMA. 2016 Feb 9;315(6):551-2. doi: 10.1001/jama.2015.18421.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验